CleanRoomsMLClient#
Index > CleanRoomsML > CleanRoomsMLClient
Auto-generated documentation for CleanRoomsML type annotations stubs module types-boto3-cleanroomsml.
CleanRoomsMLClient#
Type annotations and code completion for boto3.client("cleanroomsml").
 boto3 documentation
# CleanRoomsMLClient usage example
from boto3.session import Session
from types_boto3_cleanroomsml.client import CleanRoomsMLClient
def get_cleanroomsml_client() -> CleanRoomsMLClient:
    return Session().client("cleanroomsml")Exceptions#
boto3 client exceptions are generated in runtime.
This class provides code completion for boto3.client("cleanroomsml").exceptions structure.
# Exceptions.exceptions usage example
client = boto3.client("cleanroomsml")
try:
    do_something(client)
except (
    client.exceptions.AccessDeniedException,
    client.exceptions.ClientError,
    client.exceptions.ConflictException,
    client.exceptions.InternalServiceException,
    client.exceptions.ResourceNotFoundException,
    client.exceptions.ServiceQuotaExceededException,
    client.exceptions.ThrottlingException,
    client.exceptions.ValidationException,
) as e:
    print(e)# Exceptions.exceptions type checking example
from types_boto3_cleanroomsml.client import Exceptions
def handle_error(exc: Exceptions.AccessDeniedException) -> None:
    ...Methods#
can_paginate#
Type annotations and code completion for boto3.client("cleanroomsml").can_paginate method.
 boto3 documentation
# can_paginate method definition
def can_paginate(
    self,
    operation_name: str,
) -> bool:
    ...generate_presigned_url#
Type annotations and code completion for boto3.client("cleanroomsml").generate_presigned_url method.
 boto3 documentation
# generate_presigned_url method definition
def generate_presigned_url(
    self,
    ClientMethod: str,
    Params: Mapping[str, Any] = ...,
    ExpiresIn: int = 3600,
    HttpMethod: str = ...,
) -> str:
    ...cancel_trained_model#
Submits a request to cancel the trained model job.
Type annotations and code completion for boto3.client("cleanroomsml").cancel_trained_model method.
 boto3 documentation
# cancel_trained_model method definition
def cancel_trained_model(
    self,
    *,
    membershipIdentifier: str,
    trainedModelArn: str,
    versionIdentifier: str = ...,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# cancel_trained_model method usage example with argument unpacking
kwargs: CancelTrainedModelRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "trainedModelArn": ...,
}
parent.cancel_trained_model(**kwargs)cancel_trained_model_inference_job#
Submits a request to cancel a trained model inference job.
Type annotations and code completion for boto3.client("cleanroomsml").cancel_trained_model_inference_job method.
 boto3 documentation
# cancel_trained_model_inference_job method definition
def cancel_trained_model_inference_job(
    self,
    *,
    membershipIdentifier: str,
    trainedModelInferenceJobArn: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# cancel_trained_model_inference_job method usage example with argument unpacking
kwargs: CancelTrainedModelInferenceJobRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "trainedModelInferenceJobArn": ...,
}
parent.cancel_trained_model_inference_job(**kwargs)create_audience_model#
Defines the information necessary to create an audience model.
Type annotations and code completion for boto3.client("cleanroomsml").create_audience_model method.
 boto3 documentation
# create_audience_model method definition
def create_audience_model(
    self,
    *,
    name: str,
    trainingDatasetArn: str,
    trainingDataStartTime: TimestampTypeDef = ...,
    trainingDataEndTime: TimestampTypeDef = ...,
    kmsKeyArn: str = ...,
    tags: Mapping[str, str] = ...,
    description: str = ...,
) -> CreateAudienceModelResponseTypeDef:  # (1)
    ...# create_audience_model method usage example with argument unpacking
kwargs: CreateAudienceModelRequestTypeDef = {  # (1)
    "name": ...,
    "trainingDatasetArn": ...,
}
parent.create_audience_model(**kwargs)create_configured_audience_model#
Defines the information necessary to create a configured audience model.
Type annotations and code completion for boto3.client("cleanroomsml").create_configured_audience_model method.
 boto3 documentation
# create_configured_audience_model method definition
def create_configured_audience_model(
    self,
    *,
    name: str,
    audienceModelArn: str,
    outputConfig: ConfiguredAudienceModelOutputConfigTypeDef,  # (1)
    sharedAudienceMetrics: Sequence[SharedAudienceMetricsType],  # (2)
    description: str = ...,
    minMatchingSeedSize: int = ...,
    audienceSizeConfig: AudienceSizeConfigUnionTypeDef = ...,  # (3)
    tags: Mapping[str, str] = ...,
    childResourceTagOnCreatePolicy: TagOnCreatePolicyType = ...,  # (4)
) -> CreateConfiguredAudienceModelResponseTypeDef:  # (5)
    ...- See ConfiguredAudienceModelOutputConfigTypeDef
- See Sequence[SharedAudienceMetricsType]
- See AudienceSizeConfigUnionTypeDef
- See TagOnCreatePolicyType
- See CreateConfiguredAudienceModelResponseTypeDef
# create_configured_audience_model method usage example with argument unpacking
kwargs: CreateConfiguredAudienceModelRequestTypeDef = {  # (1)
    "name": ...,
    "audienceModelArn": ...,
    "outputConfig": ...,
    "sharedAudienceMetrics": ...,
}
parent.create_configured_audience_model(**kwargs)create_configured_model_algorithm#
Creates a configured model algorithm using a container image stored in an ECR repository.
Type annotations and code completion for boto3.client("cleanroomsml").create_configured_model_algorithm method.
 boto3 documentation
# create_configured_model_algorithm method definition
def create_configured_model_algorithm(
    self,
    *,
    name: str,
    roleArn: str,
    description: str = ...,
    trainingContainerConfig: ContainerConfigUnionTypeDef = ...,  # (1)
    inferenceContainerConfig: InferenceContainerConfigTypeDef = ...,  # (2)
    tags: Mapping[str, str] = ...,
    kmsKeyArn: str = ...,
) -> CreateConfiguredModelAlgorithmResponseTypeDef:  # (3)
    ...- See ContainerConfigUnionTypeDef
- See InferenceContainerConfigTypeDef
- See CreateConfiguredModelAlgorithmResponseTypeDef
# create_configured_model_algorithm method usage example with argument unpacking
kwargs: CreateConfiguredModelAlgorithmRequestTypeDef = {  # (1)
    "name": ...,
    "roleArn": ...,
}
parent.create_configured_model_algorithm(**kwargs)create_configured_model_algorithm_association#
Associates a configured model algorithm to a collaboration for use by any member of the collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").create_configured_model_algorithm_association method.
 boto3 documentation
# create_configured_model_algorithm_association method definition
def create_configured_model_algorithm_association(
    self,
    *,
    membershipIdentifier: str,
    configuredModelAlgorithmArn: str,
    name: str,
    description: str = ...,
    privacyConfiguration: PrivacyConfigurationUnionTypeDef = ...,  # (1)
    tags: Mapping[str, str] = ...,
) -> CreateConfiguredModelAlgorithmAssociationResponseTypeDef:  # (2)
    ...# create_configured_model_algorithm_association method usage example with argument unpacking
kwargs: CreateConfiguredModelAlgorithmAssociationRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "configuredModelAlgorithmArn": ...,
    "name": ...,
}
parent.create_configured_model_algorithm_association(**kwargs)create_ml_input_channel#
Provides the information to create an ML input channel.
Type annotations and code completion for boto3.client("cleanroomsml").create_ml_input_channel method.
 boto3 documentation
# create_ml_input_channel method definition
def create_ml_input_channel(
    self,
    *,
    membershipIdentifier: str,
    configuredModelAlgorithmAssociations: Sequence[str],
    inputChannel: InputChannelUnionTypeDef,  # (1)
    name: str,
    retentionInDays: int,
    description: str = ...,
    kmsKeyArn: str = ...,
    tags: Mapping[str, str] = ...,
) -> CreateMLInputChannelResponseTypeDef:  # (2)
    ...# create_ml_input_channel method usage example with argument unpacking
kwargs: CreateMLInputChannelRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "configuredModelAlgorithmAssociations": ...,
    "inputChannel": ...,
    "name": ...,
    "retentionInDays": ...,
}
parent.create_ml_input_channel(**kwargs)create_trained_model#
Creates a trained model from an associated configured model algorithm using data from any member of the collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").create_trained_model method.
 boto3 documentation
# create_trained_model method definition
def create_trained_model(
    self,
    *,
    membershipIdentifier: str,
    name: str,
    configuredModelAlgorithmAssociationArn: str,
    resourceConfig: ResourceConfigTypeDef,  # (1)
    dataChannels: Sequence[ModelTrainingDataChannelTypeDef],  # (2)
    hyperparameters: Mapping[str, str] = ...,
    environment: Mapping[str, str] = ...,
    stoppingCondition: StoppingConditionTypeDef = ...,  # (3)
    incrementalTrainingDataChannels: Sequence[IncrementalTrainingDataChannelTypeDef] = ...,  # (4)
    trainingInputMode: TrainingInputModeType = ...,  # (5)
    description: str = ...,
    kmsKeyArn: str = ...,
    tags: Mapping[str, str] = ...,
) -> CreateTrainedModelResponseTypeDef:  # (6)
    ...- See ResourceConfigTypeDef
- See Sequence[ModelTrainingDataChannelTypeDef]
- See StoppingConditionTypeDef
- See Sequence[IncrementalTrainingDataChannelTypeDef]
- See TrainingInputModeType
- See CreateTrainedModelResponseTypeDef
# create_trained_model method usage example with argument unpacking
kwargs: CreateTrainedModelRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "name": ...,
    "configuredModelAlgorithmAssociationArn": ...,
    "resourceConfig": ...,
    "dataChannels": ...,
}
parent.create_trained_model(**kwargs)create_training_dataset#
Defines the information necessary to create a training dataset.
Type annotations and code completion for boto3.client("cleanroomsml").create_training_dataset method.
 boto3 documentation
# create_training_dataset method definition
def create_training_dataset(
    self,
    *,
    name: str,
    roleArn: str,
    trainingData: Sequence[DatasetUnionTypeDef],  # (1)
    tags: Mapping[str, str] = ...,
    description: str = ...,
) -> CreateTrainingDatasetResponseTypeDef:  # (2)
    ...- See Sequence[DatasetUnionTypeDef]
- See CreateTrainingDatasetResponseTypeDef
# create_training_dataset method usage example with argument unpacking
kwargs: CreateTrainingDatasetRequestTypeDef = {  # (1)
    "name": ...,
    "roleArn": ...,
    "trainingData": ...,
}
parent.create_training_dataset(**kwargs)delete_audience_generation_job#
Deletes the specified audience generation job, and removes all data associated with the job.
Type annotations and code completion for boto3.client("cleanroomsml").delete_audience_generation_job method.
 boto3 documentation
# delete_audience_generation_job method definition
def delete_audience_generation_job(
    self,
    *,
    audienceGenerationJobArn: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_audience_generation_job method usage example with argument unpacking
kwargs: DeleteAudienceGenerationJobRequestTypeDef = {  # (1)
    "audienceGenerationJobArn": ...,
}
parent.delete_audience_generation_job(**kwargs)delete_audience_model#
Specifies an audience model that you want to delete.
Type annotations and code completion for boto3.client("cleanroomsml").delete_audience_model method.
 boto3 documentation
# delete_audience_model method definition
def delete_audience_model(
    self,
    *,
    audienceModelArn: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_audience_model method usage example with argument unpacking
kwargs: DeleteAudienceModelRequestTypeDef = {  # (1)
    "audienceModelArn": ...,
}
parent.delete_audience_model(**kwargs)delete_configured_audience_model#
Deletes the specified configured audience model.
Type annotations and code completion for boto3.client("cleanroomsml").delete_configured_audience_model method.
 boto3 documentation
# delete_configured_audience_model method definition
def delete_configured_audience_model(
    self,
    *,
    configuredAudienceModelArn: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_configured_audience_model method usage example with argument unpacking
kwargs: DeleteConfiguredAudienceModelRequestTypeDef = {  # (1)
    "configuredAudienceModelArn": ...,
}
parent.delete_configured_audience_model(**kwargs)delete_configured_audience_model_policy#
Deletes the specified configured audience model policy.
Type annotations and code completion for boto3.client("cleanroomsml").delete_configured_audience_model_policy method.
 boto3 documentation
# delete_configured_audience_model_policy method definition
def delete_configured_audience_model_policy(
    self,
    *,
    configuredAudienceModelArn: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_configured_audience_model_policy method usage example with argument unpacking
kwargs: DeleteConfiguredAudienceModelPolicyRequestTypeDef = {  # (1)
    "configuredAudienceModelArn": ...,
}
parent.delete_configured_audience_model_policy(**kwargs)delete_configured_model_algorithm#
Deletes a configured model algorithm.
Type annotations and code completion for boto3.client("cleanroomsml").delete_configured_model_algorithm method.
 boto3 documentation
# delete_configured_model_algorithm method definition
def delete_configured_model_algorithm(
    self,
    *,
    configuredModelAlgorithmArn: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_configured_model_algorithm method usage example with argument unpacking
kwargs: DeleteConfiguredModelAlgorithmRequestTypeDef = {  # (1)
    "configuredModelAlgorithmArn": ...,
}
parent.delete_configured_model_algorithm(**kwargs)delete_configured_model_algorithm_association#
Deletes a configured model algorithm association.
Type annotations and code completion for boto3.client("cleanroomsml").delete_configured_model_algorithm_association method.
 boto3 documentation
# delete_configured_model_algorithm_association method definition
def delete_configured_model_algorithm_association(
    self,
    *,
    configuredModelAlgorithmAssociationArn: str,
    membershipIdentifier: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_configured_model_algorithm_association method usage example with argument unpacking
kwargs: DeleteConfiguredModelAlgorithmAssociationRequestTypeDef = {  # (1)
    "configuredModelAlgorithmAssociationArn": ...,
    "membershipIdentifier": ...,
}
parent.delete_configured_model_algorithm_association(**kwargs)delete_ml_configuration#
Deletes a ML modeling configuration.
Type annotations and code completion for boto3.client("cleanroomsml").delete_ml_configuration method.
 boto3 documentation
# delete_ml_configuration method definition
def delete_ml_configuration(
    self,
    *,
    membershipIdentifier: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_ml_configuration method usage example with argument unpacking
kwargs: DeleteMLConfigurationRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
}
parent.delete_ml_configuration(**kwargs)delete_ml_input_channel_data#
Provides the information necessary to delete an ML input channel.
Type annotations and code completion for boto3.client("cleanroomsml").delete_ml_input_channel_data method.
 boto3 documentation
# delete_ml_input_channel_data method definition
def delete_ml_input_channel_data(
    self,
    *,
    mlInputChannelArn: str,
    membershipIdentifier: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_ml_input_channel_data method usage example with argument unpacking
kwargs: DeleteMLInputChannelDataRequestTypeDef = {  # (1)
    "mlInputChannelArn": ...,
    "membershipIdentifier": ...,
}
parent.delete_ml_input_channel_data(**kwargs)delete_trained_model_output#
Deletes the model artifacts stored by the service.
Type annotations and code completion for boto3.client("cleanroomsml").delete_trained_model_output method.
 boto3 documentation
# delete_trained_model_output method definition
def delete_trained_model_output(
    self,
    *,
    trainedModelArn: str,
    membershipIdentifier: str,
    versionIdentifier: str = ...,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_trained_model_output method usage example with argument unpacking
kwargs: DeleteTrainedModelOutputRequestTypeDef = {  # (1)
    "trainedModelArn": ...,
    "membershipIdentifier": ...,
}
parent.delete_trained_model_output(**kwargs)delete_training_dataset#
Specifies a training dataset that you want to delete.
Type annotations and code completion for boto3.client("cleanroomsml").delete_training_dataset method.
 boto3 documentation
# delete_training_dataset method definition
def delete_training_dataset(
    self,
    *,
    trainingDatasetArn: str,
) -> EmptyResponseMetadataTypeDef:  # (1)
    ...# delete_training_dataset method usage example with argument unpacking
kwargs: DeleteTrainingDatasetRequestTypeDef = {  # (1)
    "trainingDatasetArn": ...,
}
parent.delete_training_dataset(**kwargs)get_audience_generation_job#
Returns information about an audience generation job.
Type annotations and code completion for boto3.client("cleanroomsml").get_audience_generation_job method.
 boto3 documentation
# get_audience_generation_job method definition
def get_audience_generation_job(
    self,
    *,
    audienceGenerationJobArn: str,
) -> GetAudienceGenerationJobResponseTypeDef:  # (1)
    ...# get_audience_generation_job method usage example with argument unpacking
kwargs: GetAudienceGenerationJobRequestTypeDef = {  # (1)
    "audienceGenerationJobArn": ...,
}
parent.get_audience_generation_job(**kwargs)get_audience_model#
Returns information about an audience model.
Type annotations and code completion for boto3.client("cleanroomsml").get_audience_model method.
 boto3 documentation
# get_audience_model method definition
def get_audience_model(
    self,
    *,
    audienceModelArn: str,
) -> GetAudienceModelResponseTypeDef:  # (1)
    ...# get_audience_model method usage example with argument unpacking
kwargs: GetAudienceModelRequestTypeDef = {  # (1)
    "audienceModelArn": ...,
}
parent.get_audience_model(**kwargs)get_collaboration_configured_model_algorithm_association#
Returns information about the configured model algorithm association in a collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").get_collaboration_configured_model_algorithm_association method.
 boto3 documentation
# get_collaboration_configured_model_algorithm_association method definition
def get_collaboration_configured_model_algorithm_association(
    self,
    *,
    configuredModelAlgorithmAssociationArn: str,
    collaborationIdentifier: str,
) -> GetCollaborationConfiguredModelAlgorithmAssociationResponseTypeDef:  # (1)
    ...# get_collaboration_configured_model_algorithm_association method usage example with argument unpacking
kwargs: GetCollaborationConfiguredModelAlgorithmAssociationRequestTypeDef = {  # (1)
    "configuredModelAlgorithmAssociationArn": ...,
    "collaborationIdentifier": ...,
}
parent.get_collaboration_configured_model_algorithm_association(**kwargs)get_collaboration_ml_input_channel#
Returns information about a specific ML input channel in a collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").get_collaboration_ml_input_channel method.
 boto3 documentation
# get_collaboration_ml_input_channel method definition
def get_collaboration_ml_input_channel(
    self,
    *,
    mlInputChannelArn: str,
    collaborationIdentifier: str,
) -> GetCollaborationMLInputChannelResponseTypeDef:  # (1)
    ...# get_collaboration_ml_input_channel method usage example with argument unpacking
kwargs: GetCollaborationMLInputChannelRequestTypeDef = {  # (1)
    "mlInputChannelArn": ...,
    "collaborationIdentifier": ...,
}
parent.get_collaboration_ml_input_channel(**kwargs)get_collaboration_trained_model#
Returns information about a trained model in a collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").get_collaboration_trained_model method.
 boto3 documentation
# get_collaboration_trained_model method definition
def get_collaboration_trained_model(
    self,
    *,
    trainedModelArn: str,
    collaborationIdentifier: str,
    versionIdentifier: str = ...,
) -> GetCollaborationTrainedModelResponseTypeDef:  # (1)
    ...# get_collaboration_trained_model method usage example with argument unpacking
kwargs: GetCollaborationTrainedModelRequestTypeDef = {  # (1)
    "trainedModelArn": ...,
    "collaborationIdentifier": ...,
}
parent.get_collaboration_trained_model(**kwargs)get_configured_audience_model#
Returns information about a specified configured audience model.
Type annotations and code completion for boto3.client("cleanroomsml").get_configured_audience_model method.
 boto3 documentation
# get_configured_audience_model method definition
def get_configured_audience_model(
    self,
    *,
    configuredAudienceModelArn: str,
) -> GetConfiguredAudienceModelResponseTypeDef:  # (1)
    ...# get_configured_audience_model method usage example with argument unpacking
kwargs: GetConfiguredAudienceModelRequestTypeDef = {  # (1)
    "configuredAudienceModelArn": ...,
}
parent.get_configured_audience_model(**kwargs)get_configured_audience_model_policy#
Returns information about a configured audience model policy.
Type annotations and code completion for boto3.client("cleanroomsml").get_configured_audience_model_policy method.
 boto3 documentation
# get_configured_audience_model_policy method definition
def get_configured_audience_model_policy(
    self,
    *,
    configuredAudienceModelArn: str,
) -> GetConfiguredAudienceModelPolicyResponseTypeDef:  # (1)
    ...# get_configured_audience_model_policy method usage example with argument unpacking
kwargs: GetConfiguredAudienceModelPolicyRequestTypeDef = {  # (1)
    "configuredAudienceModelArn": ...,
}
parent.get_configured_audience_model_policy(**kwargs)get_configured_model_algorithm#
Returns information about a configured model algorithm.
Type annotations and code completion for boto3.client("cleanroomsml").get_configured_model_algorithm method.
 boto3 documentation
# get_configured_model_algorithm method definition
def get_configured_model_algorithm(
    self,
    *,
    configuredModelAlgorithmArn: str,
) -> GetConfiguredModelAlgorithmResponseTypeDef:  # (1)
    ...# get_configured_model_algorithm method usage example with argument unpacking
kwargs: GetConfiguredModelAlgorithmRequestTypeDef = {  # (1)
    "configuredModelAlgorithmArn": ...,
}
parent.get_configured_model_algorithm(**kwargs)get_configured_model_algorithm_association#
Returns information about a configured model algorithm association.
Type annotations and code completion for boto3.client("cleanroomsml").get_configured_model_algorithm_association method.
 boto3 documentation
# get_configured_model_algorithm_association method definition
def get_configured_model_algorithm_association(
    self,
    *,
    configuredModelAlgorithmAssociationArn: str,
    membershipIdentifier: str,
) -> GetConfiguredModelAlgorithmAssociationResponseTypeDef:  # (1)
    ...# get_configured_model_algorithm_association method usage example with argument unpacking
kwargs: GetConfiguredModelAlgorithmAssociationRequestTypeDef = {  # (1)
    "configuredModelAlgorithmAssociationArn": ...,
    "membershipIdentifier": ...,
}
parent.get_configured_model_algorithm_association(**kwargs)get_ml_configuration#
Returns information about a specific ML configuration.
Type annotations and code completion for boto3.client("cleanroomsml").get_ml_configuration method.
 boto3 documentation
# get_ml_configuration method definition
def get_ml_configuration(
    self,
    *,
    membershipIdentifier: str,
) -> GetMLConfigurationResponseTypeDef:  # (1)
    ...# get_ml_configuration method usage example with argument unpacking
kwargs: GetMLConfigurationRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
}
parent.get_ml_configuration(**kwargs)get_ml_input_channel#
Returns information about an ML input channel.
Type annotations and code completion for boto3.client("cleanroomsml").get_ml_input_channel method.
 boto3 documentation
# get_ml_input_channel method definition
def get_ml_input_channel(
    self,
    *,
    mlInputChannelArn: str,
    membershipIdentifier: str,
) -> GetMLInputChannelResponseTypeDef:  # (1)
    ...# get_ml_input_channel method usage example with argument unpacking
kwargs: GetMLInputChannelRequestTypeDef = {  # (1)
    "mlInputChannelArn": ...,
    "membershipIdentifier": ...,
}
parent.get_ml_input_channel(**kwargs)get_trained_model#
Returns information about a trained model.
Type annotations and code completion for boto3.client("cleanroomsml").get_trained_model method.
 boto3 documentation
# get_trained_model method definition
def get_trained_model(
    self,
    *,
    trainedModelArn: str,
    membershipIdentifier: str,
    versionIdentifier: str = ...,
) -> GetTrainedModelResponseTypeDef:  # (1)
    ...# get_trained_model method usage example with argument unpacking
kwargs: GetTrainedModelRequestTypeDef = {  # (1)
    "trainedModelArn": ...,
    "membershipIdentifier": ...,
}
parent.get_trained_model(**kwargs)get_trained_model_inference_job#
Returns information about a trained model inference job.
Type annotations and code completion for boto3.client("cleanroomsml").get_trained_model_inference_job method.
 boto3 documentation
# get_trained_model_inference_job method definition
def get_trained_model_inference_job(
    self,
    *,
    membershipIdentifier: str,
    trainedModelInferenceJobArn: str,
) -> GetTrainedModelInferenceJobResponseTypeDef:  # (1)
    ...# get_trained_model_inference_job method usage example with argument unpacking
kwargs: GetTrainedModelInferenceJobRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "trainedModelInferenceJobArn": ...,
}
parent.get_trained_model_inference_job(**kwargs)get_training_dataset#
Returns information about a training dataset.
Type annotations and code completion for boto3.client("cleanroomsml").get_training_dataset method.
 boto3 documentation
# get_training_dataset method definition
def get_training_dataset(
    self,
    *,
    trainingDatasetArn: str,
) -> GetTrainingDatasetResponseTypeDef:  # (1)
    ...# get_training_dataset method usage example with argument unpacking
kwargs: GetTrainingDatasetRequestTypeDef = {  # (1)
    "trainingDatasetArn": ...,
}
parent.get_training_dataset(**kwargs)list_audience_export_jobs#
Returns a list of the audience export jobs.
Type annotations and code completion for boto3.client("cleanroomsml").list_audience_export_jobs method.
 boto3 documentation
# list_audience_export_jobs method definition
def list_audience_export_jobs(
    self,
    *,
    nextToken: str = ...,
    maxResults: int = ...,
    audienceGenerationJobArn: str = ...,
) -> ListAudienceExportJobsResponseTypeDef:  # (1)
    ...# list_audience_export_jobs method usage example with argument unpacking
kwargs: ListAudienceExportJobsRequestTypeDef = {  # (1)
    "nextToken": ...,
}
parent.list_audience_export_jobs(**kwargs)list_audience_generation_jobs#
Returns a list of audience generation jobs.
Type annotations and code completion for boto3.client("cleanroomsml").list_audience_generation_jobs method.
 boto3 documentation
# list_audience_generation_jobs method definition
def list_audience_generation_jobs(
    self,
    *,
    nextToken: str = ...,
    maxResults: int = ...,
    configuredAudienceModelArn: str = ...,
    collaborationId: str = ...,
) -> ListAudienceGenerationJobsResponseTypeDef:  # (1)
    ...# list_audience_generation_jobs method usage example with argument unpacking
kwargs: ListAudienceGenerationJobsRequestTypeDef = {  # (1)
    "nextToken": ...,
}
parent.list_audience_generation_jobs(**kwargs)list_audience_models#
Returns a list of audience models.
Type annotations and code completion for boto3.client("cleanroomsml").list_audience_models method.
 boto3 documentation
# list_audience_models method definition
def list_audience_models(
    self,
    *,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListAudienceModelsResponseTypeDef:  # (1)
    ...# list_audience_models method usage example with argument unpacking
kwargs: ListAudienceModelsRequestTypeDef = {  # (1)
    "nextToken": ...,
}
parent.list_audience_models(**kwargs)list_collaboration_configured_model_algorithm_associations#
Returns a list of the configured model algorithm associations in a collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").list_collaboration_configured_model_algorithm_associations method.
 boto3 documentation
# list_collaboration_configured_model_algorithm_associations method definition
def list_collaboration_configured_model_algorithm_associations(
    self,
    *,
    collaborationIdentifier: str,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListCollaborationConfiguredModelAlgorithmAssociationsResponseTypeDef:  # (1)
    ...# list_collaboration_configured_model_algorithm_associations method usage example with argument unpacking
kwargs: ListCollaborationConfiguredModelAlgorithmAssociationsRequestTypeDef = {  # (1)
    "collaborationIdentifier": ...,
}
parent.list_collaboration_configured_model_algorithm_associations(**kwargs)list_collaboration_ml_input_channels#
Returns a list of the ML input channels in a collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").list_collaboration_ml_input_channels method.
 boto3 documentation
# list_collaboration_ml_input_channels method definition
def list_collaboration_ml_input_channels(
    self,
    *,
    collaborationIdentifier: str,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListCollaborationMLInputChannelsResponseTypeDef:  # (1)
    ...# list_collaboration_ml_input_channels method usage example with argument unpacking
kwargs: ListCollaborationMLInputChannelsRequestTypeDef = {  # (1)
    "collaborationIdentifier": ...,
}
parent.list_collaboration_ml_input_channels(**kwargs)list_collaboration_trained_model_export_jobs#
Returns a list of the export jobs for a trained model in a collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").list_collaboration_trained_model_export_jobs method.
 boto3 documentation
# list_collaboration_trained_model_export_jobs method definition
def list_collaboration_trained_model_export_jobs(
    self,
    *,
    collaborationIdentifier: str,
    trainedModelArn: str,
    nextToken: str = ...,
    maxResults: int = ...,
    trainedModelVersionIdentifier: str = ...,
) -> ListCollaborationTrainedModelExportJobsResponseTypeDef:  # (1)
    ...# list_collaboration_trained_model_export_jobs method usage example with argument unpacking
kwargs: ListCollaborationTrainedModelExportJobsRequestTypeDef = {  # (1)
    "collaborationIdentifier": ...,
    "trainedModelArn": ...,
}
parent.list_collaboration_trained_model_export_jobs(**kwargs)list_collaboration_trained_model_inference_jobs#
Returns a list of trained model inference jobs in a specified collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").list_collaboration_trained_model_inference_jobs method.
 boto3 documentation
# list_collaboration_trained_model_inference_jobs method definition
def list_collaboration_trained_model_inference_jobs(
    self,
    *,
    collaborationIdentifier: str,
    nextToken: str = ...,
    maxResults: int = ...,
    trainedModelArn: str = ...,
    trainedModelVersionIdentifier: str = ...,
) -> ListCollaborationTrainedModelInferenceJobsResponseTypeDef:  # (1)
    ...# list_collaboration_trained_model_inference_jobs method usage example with argument unpacking
kwargs: ListCollaborationTrainedModelInferenceJobsRequestTypeDef = {  # (1)
    "collaborationIdentifier": ...,
}
parent.list_collaboration_trained_model_inference_jobs(**kwargs)list_collaboration_trained_models#
Returns a list of the trained models in a collaboration.
Type annotations and code completion for boto3.client("cleanroomsml").list_collaboration_trained_models method.
 boto3 documentation
# list_collaboration_trained_models method definition
def list_collaboration_trained_models(
    self,
    *,
    collaborationIdentifier: str,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListCollaborationTrainedModelsResponseTypeDef:  # (1)
    ...# list_collaboration_trained_models method usage example with argument unpacking
kwargs: ListCollaborationTrainedModelsRequestTypeDef = {  # (1)
    "collaborationIdentifier": ...,
}
parent.list_collaboration_trained_models(**kwargs)list_configured_audience_models#
Returns a list of the configured audience models.
Type annotations and code completion for boto3.client("cleanroomsml").list_configured_audience_models method.
 boto3 documentation
# list_configured_audience_models method definition
def list_configured_audience_models(
    self,
    *,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListConfiguredAudienceModelsResponseTypeDef:  # (1)
    ...# list_configured_audience_models method usage example with argument unpacking
kwargs: ListConfiguredAudienceModelsRequestTypeDef = {  # (1)
    "nextToken": ...,
}
parent.list_configured_audience_models(**kwargs)list_configured_model_algorithm_associations#
Returns a list of configured model algorithm associations.
Type annotations and code completion for boto3.client("cleanroomsml").list_configured_model_algorithm_associations method.
 boto3 documentation
# list_configured_model_algorithm_associations method definition
def list_configured_model_algorithm_associations(
    self,
    *,
    membershipIdentifier: str,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListConfiguredModelAlgorithmAssociationsResponseTypeDef:  # (1)
    ...# list_configured_model_algorithm_associations method usage example with argument unpacking
kwargs: ListConfiguredModelAlgorithmAssociationsRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
}
parent.list_configured_model_algorithm_associations(**kwargs)list_configured_model_algorithms#
Returns a list of configured model algorithms.
Type annotations and code completion for boto3.client("cleanroomsml").list_configured_model_algorithms method.
 boto3 documentation
# list_configured_model_algorithms method definition
def list_configured_model_algorithms(
    self,
    *,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListConfiguredModelAlgorithmsResponseTypeDef:  # (1)
    ...# list_configured_model_algorithms method usage example with argument unpacking
kwargs: ListConfiguredModelAlgorithmsRequestTypeDef = {  # (1)
    "nextToken": ...,
}
parent.list_configured_model_algorithms(**kwargs)list_ml_input_channels#
Returns a list of ML input channels.
Type annotations and code completion for boto3.client("cleanroomsml").list_ml_input_channels method.
 boto3 documentation
# list_ml_input_channels method definition
def list_ml_input_channels(
    self,
    *,
    membershipIdentifier: str,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListMLInputChannelsResponseTypeDef:  # (1)
    ...# list_ml_input_channels method usage example with argument unpacking
kwargs: ListMLInputChannelsRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
}
parent.list_ml_input_channels(**kwargs)list_tags_for_resource#
Returns a list of tags for a provided resource.
Type annotations and code completion for boto3.client("cleanroomsml").list_tags_for_resource method.
 boto3 documentation
# list_tags_for_resource method definition
def list_tags_for_resource(
    self,
    *,
    resourceArn: str,
) -> ListTagsForResourceResponseTypeDef:  # (1)
    ...# list_tags_for_resource method usage example with argument unpacking
kwargs: ListTagsForResourceRequestTypeDef = {  # (1)
    "resourceArn": ...,
}
parent.list_tags_for_resource(**kwargs)list_trained_model_inference_jobs#
Returns a list of trained model inference jobs that match the request parameters.
Type annotations and code completion for boto3.client("cleanroomsml").list_trained_model_inference_jobs method.
 boto3 documentation
# list_trained_model_inference_jobs method definition
def list_trained_model_inference_jobs(
    self,
    *,
    membershipIdentifier: str,
    nextToken: str = ...,
    maxResults: int = ...,
    trainedModelArn: str = ...,
    trainedModelVersionIdentifier: str = ...,
) -> ListTrainedModelInferenceJobsResponseTypeDef:  # (1)
    ...# list_trained_model_inference_jobs method usage example with argument unpacking
kwargs: ListTrainedModelInferenceJobsRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
}
parent.list_trained_model_inference_jobs(**kwargs)list_trained_model_versions#
Returns a list of trained model versions for a specified trained model.
Type annotations and code completion for boto3.client("cleanroomsml").list_trained_model_versions method.
 boto3 documentation
# list_trained_model_versions method definition
def list_trained_model_versions(
    self,
    *,
    membershipIdentifier: str,
    trainedModelArn: str,
    nextToken: str = ...,
    maxResults: int = ...,
    status: TrainedModelStatusType = ...,  # (1)
) -> ListTrainedModelVersionsResponseTypeDef:  # (2)
    ...# list_trained_model_versions method usage example with argument unpacking
kwargs: ListTrainedModelVersionsRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "trainedModelArn": ...,
}
parent.list_trained_model_versions(**kwargs)list_trained_models#
Returns a list of trained models.
Type annotations and code completion for boto3.client("cleanroomsml").list_trained_models method.
 boto3 documentation
# list_trained_models method definition
def list_trained_models(
    self,
    *,
    membershipIdentifier: str,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListTrainedModelsResponseTypeDef:  # (1)
    ...# list_trained_models method usage example with argument unpacking
kwargs: ListTrainedModelsRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
}
parent.list_trained_models(**kwargs)list_training_datasets#
Returns a list of training datasets.
Type annotations and code completion for boto3.client("cleanroomsml").list_training_datasets method.
 boto3 documentation
# list_training_datasets method definition
def list_training_datasets(
    self,
    *,
    nextToken: str = ...,
    maxResults: int = ...,
) -> ListTrainingDatasetsResponseTypeDef:  # (1)
    ...# list_training_datasets method usage example with argument unpacking
kwargs: ListTrainingDatasetsRequestTypeDef = {  # (1)
    "nextToken": ...,
}
parent.list_training_datasets(**kwargs)put_configured_audience_model_policy#
Create or update the resource policy for a configured audience model.
Type annotations and code completion for boto3.client("cleanroomsml").put_configured_audience_model_policy method.
 boto3 documentation
# put_configured_audience_model_policy method definition
def put_configured_audience_model_policy(
    self,
    *,
    configuredAudienceModelArn: str,
    configuredAudienceModelPolicy: str,
    previousPolicyHash: str = ...,
    policyExistenceCondition: PolicyExistenceConditionType = ...,  # (1)
) -> PutConfiguredAudienceModelPolicyResponseTypeDef:  # (2)
    ...# put_configured_audience_model_policy method usage example with argument unpacking
kwargs: PutConfiguredAudienceModelPolicyRequestTypeDef = {  # (1)
    "configuredAudienceModelArn": ...,
    "configuredAudienceModelPolicy": ...,
}
parent.put_configured_audience_model_policy(**kwargs)put_ml_configuration#
Assigns information about an ML configuration.
Type annotations and code completion for boto3.client("cleanroomsml").put_ml_configuration method.
 boto3 documentation
# put_ml_configuration method definition
def put_ml_configuration(
    self,
    *,
    membershipIdentifier: str,
    defaultOutputLocation: MLOutputConfigurationTypeDef,  # (1)
) -> EmptyResponseMetadataTypeDef:  # (2)
    ...# put_ml_configuration method usage example with argument unpacking
kwargs: PutMLConfigurationRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "defaultOutputLocation": ...,
}
parent.put_ml_configuration(**kwargs)start_audience_export_job#
Export an audience of a specified size after you have generated an audience.
Type annotations and code completion for boto3.client("cleanroomsml").start_audience_export_job method.
 boto3 documentation
# start_audience_export_job method definition
def start_audience_export_job(
    self,
    *,
    name: str,
    audienceGenerationJobArn: str,
    audienceSize: AudienceSizeTypeDef,  # (1)
    description: str = ...,
) -> EmptyResponseMetadataTypeDef:  # (2)
    ...# start_audience_export_job method usage example with argument unpacking
kwargs: StartAudienceExportJobRequestTypeDef = {  # (1)
    "name": ...,
    "audienceGenerationJobArn": ...,
    "audienceSize": ...,
}
parent.start_audience_export_job(**kwargs)start_audience_generation_job#
Information necessary to start the audience generation job.
Type annotations and code completion for boto3.client("cleanroomsml").start_audience_generation_job method.
 boto3 documentation
# start_audience_generation_job method definition
def start_audience_generation_job(
    self,
    *,
    name: str,
    configuredAudienceModelArn: str,
    seedAudience: AudienceGenerationJobDataSourceUnionTypeDef,  # (1)
    includeSeedInOutput: bool = ...,
    collaborationId: str = ...,
    description: str = ...,
    tags: Mapping[str, str] = ...,
) -> StartAudienceGenerationJobResponseTypeDef:  # (2)
    ...# start_audience_generation_job method usage example with argument unpacking
kwargs: StartAudienceGenerationJobRequestTypeDef = {  # (1)
    "name": ...,
    "configuredAudienceModelArn": ...,
    "seedAudience": ...,
}
parent.start_audience_generation_job(**kwargs)start_trained_model_export_job#
Provides the information necessary to start a trained model export job.
Type annotations and code completion for boto3.client("cleanroomsml").start_trained_model_export_job method.
 boto3 documentation
# start_trained_model_export_job method definition
def start_trained_model_export_job(
    self,
    *,
    name: str,
    trainedModelArn: str,
    membershipIdentifier: str,
    outputConfiguration: TrainedModelExportOutputConfigurationUnionTypeDef,  # (1)
    trainedModelVersionIdentifier: str = ...,
    description: str = ...,
) -> EmptyResponseMetadataTypeDef:  # (2)
    ...# start_trained_model_export_job method usage example with argument unpacking
kwargs: StartTrainedModelExportJobRequestTypeDef = {  # (1)
    "name": ...,
    "trainedModelArn": ...,
    "membershipIdentifier": ...,
    "outputConfiguration": ...,
}
parent.start_trained_model_export_job(**kwargs)start_trained_model_inference_job#
Defines the information necessary to begin a trained model inference job.
Type annotations and code completion for boto3.client("cleanroomsml").start_trained_model_inference_job method.
 boto3 documentation
# start_trained_model_inference_job method definition
def start_trained_model_inference_job(
    self,
    *,
    membershipIdentifier: str,
    name: str,
    trainedModelArn: str,
    resourceConfig: InferenceResourceConfigTypeDef,  # (1)
    outputConfiguration: InferenceOutputConfigurationUnionTypeDef,  # (2)
    dataSource: ModelInferenceDataSourceTypeDef,  # (3)
    trainedModelVersionIdentifier: str = ...,
    configuredModelAlgorithmAssociationArn: str = ...,
    description: str = ...,
    containerExecutionParameters: InferenceContainerExecutionParametersTypeDef = ...,  # (4)
    environment: Mapping[str, str] = ...,
    kmsKeyArn: str = ...,
    tags: Mapping[str, str] = ...,
) -> StartTrainedModelInferenceJobResponseTypeDef:  # (5)
    ...- See InferenceResourceConfigTypeDef
- See InferenceOutputConfigurationUnionTypeDef
- See ModelInferenceDataSourceTypeDef
- See InferenceContainerExecutionParametersTypeDef
- See StartTrainedModelInferenceJobResponseTypeDef
# start_trained_model_inference_job method usage example with argument unpacking
kwargs: StartTrainedModelInferenceJobRequestTypeDef = {  # (1)
    "membershipIdentifier": ...,
    "name": ...,
    "trainedModelArn": ...,
    "resourceConfig": ...,
    "outputConfiguration": ...,
    "dataSource": ...,
}
parent.start_trained_model_inference_job(**kwargs)tag_resource#
Adds metadata tags to a specified resource.
Type annotations and code completion for boto3.client("cleanroomsml").tag_resource method.
 boto3 documentation
# tag_resource method definition
def tag_resource(
    self,
    *,
    resourceArn: str,
    tags: Mapping[str, str],
) -> Dict[str, Any]:
    ...# tag_resource method usage example with argument unpacking
kwargs: TagResourceRequestTypeDef = {  # (1)
    "resourceArn": ...,
    "tags": ...,
}
parent.tag_resource(**kwargs)untag_resource#
Removes metadata tags from a specified resource.
Type annotations and code completion for boto3.client("cleanroomsml").untag_resource method.
 boto3 documentation
# untag_resource method definition
def untag_resource(
    self,
    *,
    resourceArn: str,
    tagKeys: Sequence[str],
) -> Dict[str, Any]:
    ...# untag_resource method usage example with argument unpacking
kwargs: UntagResourceRequestTypeDef = {  # (1)
    "resourceArn": ...,
    "tagKeys": ...,
}
parent.untag_resource(**kwargs)update_configured_audience_model#
Provides the information necessary to update a configured audience model.
Type annotations and code completion for boto3.client("cleanroomsml").update_configured_audience_model method.
 boto3 documentation
# update_configured_audience_model method definition
def update_configured_audience_model(
    self,
    *,
    configuredAudienceModelArn: str,
    outputConfig: ConfiguredAudienceModelOutputConfigTypeDef = ...,  # (1)
    audienceModelArn: str = ...,
    sharedAudienceMetrics: Sequence[SharedAudienceMetricsType] = ...,  # (2)
    minMatchingSeedSize: int = ...,
    audienceSizeConfig: AudienceSizeConfigUnionTypeDef = ...,  # (3)
    description: str = ...,
) -> UpdateConfiguredAudienceModelResponseTypeDef:  # (4)
    ...- See ConfiguredAudienceModelOutputConfigTypeDef
- See Sequence[SharedAudienceMetricsType]
- See AudienceSizeConfigUnionTypeDef
- See UpdateConfiguredAudienceModelResponseTypeDef
# update_configured_audience_model method usage example with argument unpacking
kwargs: UpdateConfiguredAudienceModelRequestTypeDef = {  # (1)
    "configuredAudienceModelArn": ...,
}
parent.update_configured_audience_model(**kwargs)get_paginator#
Type annotations and code completion for boto3.client("cleanroomsml").get_paginator method with overloads.
- client.get_paginator("list_audience_export_jobs")-> ListAudienceExportJobsPaginator
- client.get_paginator("list_audience_generation_jobs")-> ListAudienceGenerationJobsPaginator
- client.get_paginator("list_audience_models")-> ListAudienceModelsPaginator
- client.get_paginator("list_collaboration_configured_model_algorithm_associations")-> ListCollaborationConfiguredModelAlgorithmAssociationsPaginator
- client.get_paginator("list_collaboration_ml_input_channels")-> ListCollaborationMLInputChannelsPaginator
- client.get_paginator("list_collaboration_trained_model_export_jobs")-> ListCollaborationTrainedModelExportJobsPaginator
- client.get_paginator("list_collaboration_trained_model_inference_jobs")-> ListCollaborationTrainedModelInferenceJobsPaginator
- client.get_paginator("list_collaboration_trained_models")-> ListCollaborationTrainedModelsPaginator
- client.get_paginator("list_configured_audience_models")-> ListConfiguredAudienceModelsPaginator
- client.get_paginator("list_configured_model_algorithm_associations")-> ListConfiguredModelAlgorithmAssociationsPaginator
- client.get_paginator("list_configured_model_algorithms")-> ListConfiguredModelAlgorithmsPaginator
- client.get_paginator("list_ml_input_channels")-> ListMLInputChannelsPaginator
- client.get_paginator("list_trained_model_inference_jobs")-> ListTrainedModelInferenceJobsPaginator
- client.get_paginator("list_trained_model_versions")-> ListTrainedModelVersionsPaginator
- client.get_paginator("list_trained_models")-> ListTrainedModelsPaginator
- client.get_paginator("list_training_datasets")-> ListTrainingDatasetsPaginator