MachineLearningClient#
Index > MachineLearning > MachineLearningClient
Auto-generated documentation for MachineLearning type annotations stubs module types-boto3-machinelearning.
MachineLearningClient#
Type annotations and code completion for boto3.client("machinelearning").
 boto3 documentation
# MachineLearningClient usage example
from boto3.session import Session
from types_boto3_machinelearning.client import MachineLearningClient
def get_machinelearning_client() -> MachineLearningClient:
    return Session().client("machinelearning")Exceptions#
boto3 client exceptions are generated in runtime.
This class provides code completion for boto3.client("machinelearning").exceptions structure.
# Exceptions.exceptions usage example
client = boto3.client("machinelearning")
try:
    do_something(client)
except (
    client.exceptions.ClientError,
    client.exceptions.IdempotentParameterMismatchException,
    client.exceptions.InternalServerException,
    client.exceptions.InvalidInputException,
    client.exceptions.InvalidTagException,
    client.exceptions.LimitExceededException,
    client.exceptions.PredictorNotMountedException,
    client.exceptions.ResourceNotFoundException,
    client.exceptions.TagLimitExceededException,
) as e:
    print(e)# Exceptions.exceptions type checking example
from types_boto3_machinelearning.client import Exceptions
def handle_error(exc: Exceptions.ClientError) -> None:
    ...Methods#
can_paginate#
Type annotations and code completion for boto3.client("machinelearning").can_paginate method.
 boto3 documentation
# can_paginate method definition
def can_paginate(
    self,
    operation_name: str,
) -> bool:
    ...generate_presigned_url#
Type annotations and code completion for boto3.client("machinelearning").generate_presigned_url method.
 boto3 documentation
# generate_presigned_url method definition
def generate_presigned_url(
    self,
    ClientMethod: str,
    Params: Mapping[str, Any] = ...,
    ExpiresIn: int = 3600,
    HttpMethod: str = ...,
) -> str:
    ...add_tags#
Adds one or more tags to an object, up to a limit of 10.
Type annotations and code completion for boto3.client("machinelearning").add_tags method.
 boto3 documentation
# add_tags method definition
def add_tags(
    self,
    *,
    Tags: Sequence[TagTypeDef],  # (1)
    ResourceId: str,
    ResourceType: TaggableResourceTypeType,  # (2)
) -> AddTagsOutputTypeDef:  # (3)
    ...- See Sequence[TagTypeDef]
- See TaggableResourceTypeType
- See AddTagsOutputTypeDef
# add_tags method usage example with argument unpacking
kwargs: AddTagsInputTypeDef = {  # (1)
    "Tags": ...,
    "ResourceId": ...,
    "ResourceType": ...,
}
parent.add_tags(**kwargs)create_batch_prediction#
Generates predictions for a group of observations.
Type annotations and code completion for boto3.client("machinelearning").create_batch_prediction method.
 boto3 documentation
# create_batch_prediction method definition
def create_batch_prediction(
    self,
    *,
    BatchPredictionId: str,
    MLModelId: str,
    BatchPredictionDataSourceId: str,
    OutputUri: str,
    BatchPredictionName: str = ...,
) -> CreateBatchPredictionOutputTypeDef:  # (1)
    ...# create_batch_prediction method usage example with argument unpacking
kwargs: CreateBatchPredictionInputTypeDef = {  # (1)
    "BatchPredictionId": ...,
    "MLModelId": ...,
    "BatchPredictionDataSourceId": ...,
    "OutputUri": ...,
}
parent.create_batch_prediction(**kwargs)create_data_source_from_rds#
Creates a DataSource object from an  Amazon Relational Database Service
(Amazon RDS).
Type annotations and code completion for boto3.client("machinelearning").create_data_source_from_rds method.
 boto3 documentation
# create_data_source_from_rds method definition
def create_data_source_from_rds(
    self,
    *,
    DataSourceId: str,
    RDSData: RDSDataSpecTypeDef,  # (1)
    RoleARN: str,
    DataSourceName: str = ...,
    ComputeStatistics: bool = ...,
) -> CreateDataSourceFromRDSOutputTypeDef:  # (2)
    ...# create_data_source_from_rds method usage example with argument unpacking
kwargs: CreateDataSourceFromRDSInputTypeDef = {  # (1)
    "DataSourceId": ...,
    "RDSData": ...,
    "RoleARN": ...,
}
parent.create_data_source_from_rds(**kwargs)create_data_source_from_redshift#
Creates a DataSource from a database hosted on an Amazon Redshift
cluster.
Type annotations and code completion for boto3.client("machinelearning").create_data_source_from_redshift method.
 boto3 documentation
# create_data_source_from_redshift method definition
def create_data_source_from_redshift(
    self,
    *,
    DataSourceId: str,
    DataSpec: RedshiftDataSpecTypeDef,  # (1)
    RoleARN: str,
    DataSourceName: str = ...,
    ComputeStatistics: bool = ...,
) -> CreateDataSourceFromRedshiftOutputTypeDef:  # (2)
    ...# create_data_source_from_redshift method usage example with argument unpacking
kwargs: CreateDataSourceFromRedshiftInputTypeDef = {  # (1)
    "DataSourceId": ...,
    "DataSpec": ...,
    "RoleARN": ...,
}
parent.create_data_source_from_redshift(**kwargs)create_data_source_from_s3#
Creates a DataSource object.
Type annotations and code completion for boto3.client("machinelearning").create_data_source_from_s3 method.
 boto3 documentation
# create_data_source_from_s3 method definition
def create_data_source_from_s3(
    self,
    *,
    DataSourceId: str,
    DataSpec: S3DataSpecTypeDef,  # (1)
    DataSourceName: str = ...,
    ComputeStatistics: bool = ...,
) -> CreateDataSourceFromS3OutputTypeDef:  # (2)
    ...# create_data_source_from_s3 method usage example with argument unpacking
kwargs: CreateDataSourceFromS3InputTypeDef = {  # (1)
    "DataSourceId": ...,
    "DataSpec": ...,
}
parent.create_data_source_from_s3(**kwargs)create_evaluation#
Creates a new Evaluation of an MLModel.
Type annotations and code completion for boto3.client("machinelearning").create_evaluation method.
 boto3 documentation
# create_evaluation method definition
def create_evaluation(
    self,
    *,
    EvaluationId: str,
    MLModelId: str,
    EvaluationDataSourceId: str,
    EvaluationName: str = ...,
) -> CreateEvaluationOutputTypeDef:  # (1)
    ...# create_evaluation method usage example with argument unpacking
kwargs: CreateEvaluationInputTypeDef = {  # (1)
    "EvaluationId": ...,
    "MLModelId": ...,
    "EvaluationDataSourceId": ...,
}
parent.create_evaluation(**kwargs)create_ml_model#
Creates a new MLModel using the DataSource and the
recipe as information sources.
Type annotations and code completion for boto3.client("machinelearning").create_ml_model method.
 boto3 documentation
# create_ml_model method definition
def create_ml_model(
    self,
    *,
    MLModelId: str,
    MLModelType: MLModelTypeType,  # (1)
    TrainingDataSourceId: str,
    MLModelName: str = ...,
    Parameters: Mapping[str, str] = ...,
    Recipe: str = ...,
    RecipeUri: str = ...,
) -> CreateMLModelOutputTypeDef:  # (2)
    ...# create_ml_model method usage example with argument unpacking
kwargs: CreateMLModelInputTypeDef = {  # (1)
    "MLModelId": ...,
    "MLModelType": ...,
    "TrainingDataSourceId": ...,
}
parent.create_ml_model(**kwargs)create_realtime_endpoint#
Creates a real-time endpoint for the MLModel.
Type annotations and code completion for boto3.client("machinelearning").create_realtime_endpoint method.
 boto3 documentation
# create_realtime_endpoint method definition
def create_realtime_endpoint(
    self,
    *,
    MLModelId: str,
) -> CreateRealtimeEndpointOutputTypeDef:  # (1)
    ...# create_realtime_endpoint method usage example with argument unpacking
kwargs: CreateRealtimeEndpointInputTypeDef = {  # (1)
    "MLModelId": ...,
}
parent.create_realtime_endpoint(**kwargs)delete_batch_prediction#
Assigns the DELETED status to a BatchPrediction, rendering it
unusable.
Type annotations and code completion for boto3.client("machinelearning").delete_batch_prediction method.
 boto3 documentation
# delete_batch_prediction method definition
def delete_batch_prediction(
    self,
    *,
    BatchPredictionId: str,
) -> DeleteBatchPredictionOutputTypeDef:  # (1)
    ...# delete_batch_prediction method usage example with argument unpacking
kwargs: DeleteBatchPredictionInputTypeDef = {  # (1)
    "BatchPredictionId": ...,
}
parent.delete_batch_prediction(**kwargs)delete_data_source#
Assigns the DELETED status to a DataSource, rendering it unusable.
Type annotations and code completion for boto3.client("machinelearning").delete_data_source method.
 boto3 documentation
# delete_data_source method definition
def delete_data_source(
    self,
    *,
    DataSourceId: str,
) -> DeleteDataSourceOutputTypeDef:  # (1)
    ...# delete_data_source method usage example with argument unpacking
kwargs: DeleteDataSourceInputTypeDef = {  # (1)
    "DataSourceId": ...,
}
parent.delete_data_source(**kwargs)delete_evaluation#
Assigns the DELETED status to an Evaluation,
rendering it unusable.
Type annotations and code completion for boto3.client("machinelearning").delete_evaluation method.
 boto3 documentation
# delete_evaluation method definition
def delete_evaluation(
    self,
    *,
    EvaluationId: str,
) -> DeleteEvaluationOutputTypeDef:  # (1)
    ...# delete_evaluation method usage example with argument unpacking
kwargs: DeleteEvaluationInputTypeDef = {  # (1)
    "EvaluationId": ...,
}
parent.delete_evaluation(**kwargs)delete_ml_model#
Assigns the DELETED status to an MLModel, rendering
it unusable.
Type annotations and code completion for boto3.client("machinelearning").delete_ml_model method.
 boto3 documentation
# delete_ml_model method definition
def delete_ml_model(
    self,
    *,
    MLModelId: str,
) -> DeleteMLModelOutputTypeDef:  # (1)
    ...# delete_ml_model method usage example with argument unpacking
kwargs: DeleteMLModelInputTypeDef = {  # (1)
    "MLModelId": ...,
}
parent.delete_ml_model(**kwargs)delete_realtime_endpoint#
Deletes a real time endpoint of an MLModel.
Type annotations and code completion for boto3.client("machinelearning").delete_realtime_endpoint method.
 boto3 documentation
# delete_realtime_endpoint method definition
def delete_realtime_endpoint(
    self,
    *,
    MLModelId: str,
) -> DeleteRealtimeEndpointOutputTypeDef:  # (1)
    ...# delete_realtime_endpoint method usage example with argument unpacking
kwargs: DeleteRealtimeEndpointInputTypeDef = {  # (1)
    "MLModelId": ...,
}
parent.delete_realtime_endpoint(**kwargs)delete_tags#
Deletes the specified tags associated with an ML object.
Type annotations and code completion for boto3.client("machinelearning").delete_tags method.
 boto3 documentation
# delete_tags method definition
def delete_tags(
    self,
    *,
    TagKeys: Sequence[str],
    ResourceId: str,
    ResourceType: TaggableResourceTypeType,  # (1)
) -> DeleteTagsOutputTypeDef:  # (2)
    ...# delete_tags method usage example with argument unpacking
kwargs: DeleteTagsInputTypeDef = {  # (1)
    "TagKeys": ...,
    "ResourceId": ...,
    "ResourceType": ...,
}
parent.delete_tags(**kwargs)describe_batch_predictions#
Returns a list of BatchPrediction operations that match the search
criteria in the request.
Type annotations and code completion for boto3.client("machinelearning").describe_batch_predictions method.
 boto3 documentation
# describe_batch_predictions method definition
def describe_batch_predictions(
    self,
    *,
    FilterVariable: BatchPredictionFilterVariableType = ...,  # (1)
    EQ: str = ...,
    GT: str = ...,
    LT: str = ...,
    GE: str = ...,
    LE: str = ...,
    NE: str = ...,
    Prefix: str = ...,
    SortOrder: SortOrderType = ...,  # (2)
    NextToken: str = ...,
    Limit: int = ...,
) -> DescribeBatchPredictionsOutputTypeDef:  # (3)
    ...# describe_batch_predictions method usage example with argument unpacking
kwargs: DescribeBatchPredictionsInputTypeDef = {  # (1)
    "FilterVariable": ...,
}
parent.describe_batch_predictions(**kwargs)describe_data_sources#
Returns a list of DataSource that match the search criteria in the
request.
Type annotations and code completion for boto3.client("machinelearning").describe_data_sources method.
 boto3 documentation
# describe_data_sources method definition
def describe_data_sources(
    self,
    *,
    FilterVariable: DataSourceFilterVariableType = ...,  # (1)
    EQ: str = ...,
    GT: str = ...,
    LT: str = ...,
    GE: str = ...,
    LE: str = ...,
    NE: str = ...,
    Prefix: str = ...,
    SortOrder: SortOrderType = ...,  # (2)
    NextToken: str = ...,
    Limit: int = ...,
) -> DescribeDataSourcesOutputTypeDef:  # (3)
    ...# describe_data_sources method usage example with argument unpacking
kwargs: DescribeDataSourcesInputTypeDef = {  # (1)
    "FilterVariable": ...,
}
parent.describe_data_sources(**kwargs)describe_evaluations#
Returns a list of DescribeEvaluations that match the search
criteria in the request.
Type annotations and code completion for boto3.client("machinelearning").describe_evaluations method.
 boto3 documentation
# describe_evaluations method definition
def describe_evaluations(
    self,
    *,
    FilterVariable: EvaluationFilterVariableType = ...,  # (1)
    EQ: str = ...,
    GT: str = ...,
    LT: str = ...,
    GE: str = ...,
    LE: str = ...,
    NE: str = ...,
    Prefix: str = ...,
    SortOrder: SortOrderType = ...,  # (2)
    NextToken: str = ...,
    Limit: int = ...,
) -> DescribeEvaluationsOutputTypeDef:  # (3)
    ...# describe_evaluations method usage example with argument unpacking
kwargs: DescribeEvaluationsInputTypeDef = {  # (1)
    "FilterVariable": ...,
}
parent.describe_evaluations(**kwargs)describe_ml_models#
Returns a list of MLModel that match the search criteria in the
request.
Type annotations and code completion for boto3.client("machinelearning").describe_ml_models method.
 boto3 documentation
# describe_ml_models method definition
def describe_ml_models(
    self,
    *,
    FilterVariable: MLModelFilterVariableType = ...,  # (1)
    EQ: str = ...,
    GT: str = ...,
    LT: str = ...,
    GE: str = ...,
    LE: str = ...,
    NE: str = ...,
    Prefix: str = ...,
    SortOrder: SortOrderType = ...,  # (2)
    NextToken: str = ...,
    Limit: int = ...,
) -> DescribeMLModelsOutputTypeDef:  # (3)
    ...# describe_ml_models method usage example with argument unpacking
kwargs: DescribeMLModelsInputTypeDef = {  # (1)
    "FilterVariable": ...,
}
parent.describe_ml_models(**kwargs)describe_tags#
Describes one or more of the tags for your Amazon ML object.
Type annotations and code completion for boto3.client("machinelearning").describe_tags method.
 boto3 documentation
# describe_tags method definition
def describe_tags(
    self,
    *,
    ResourceId: str,
    ResourceType: TaggableResourceTypeType,  # (1)
) -> DescribeTagsOutputTypeDef:  # (2)
    ...# describe_tags method usage example with argument unpacking
kwargs: DescribeTagsInputTypeDef = {  # (1)
    "ResourceId": ...,
    "ResourceType": ...,
}
parent.describe_tags(**kwargs)get_batch_prediction#
Returns a BatchPrediction that includes detailed metadata, status,
and data file information for a Batch Prediction request.
Type annotations and code completion for boto3.client("machinelearning").get_batch_prediction method.
 boto3 documentation
# get_batch_prediction method definition
def get_batch_prediction(
    self,
    *,
    BatchPredictionId: str,
) -> GetBatchPredictionOutputTypeDef:  # (1)
    ...# get_batch_prediction method usage example with argument unpacking
kwargs: GetBatchPredictionInputTypeDef = {  # (1)
    "BatchPredictionId": ...,
}
parent.get_batch_prediction(**kwargs)get_data_source#
Returns a DataSource that includes metadata and data file
information, as well as the current status of the DataSource.
Type annotations and code completion for boto3.client("machinelearning").get_data_source method.
 boto3 documentation
# get_data_source method definition
def get_data_source(
    self,
    *,
    DataSourceId: str,
    Verbose: bool = ...,
) -> GetDataSourceOutputTypeDef:  # (1)
    ...# get_data_source method usage example with argument unpacking
kwargs: GetDataSourceInputTypeDef = {  # (1)
    "DataSourceId": ...,
}
parent.get_data_source(**kwargs)get_evaluation#
Returns an Evaluation that includes metadata as well as the
current status of the Evaluation.
Type annotations and code completion for boto3.client("machinelearning").get_evaluation method.
 boto3 documentation
# get_evaluation method definition
def get_evaluation(
    self,
    *,
    EvaluationId: str,
) -> GetEvaluationOutputTypeDef:  # (1)
    ...# get_evaluation method usage example with argument unpacking
kwargs: GetEvaluationInputTypeDef = {  # (1)
    "EvaluationId": ...,
}
parent.get_evaluation(**kwargs)get_ml_model#
Returns an MLModel that includes detailed metadata, data source
information, and the current status of the MLModel.
Type annotations and code completion for boto3.client("machinelearning").get_ml_model method.
 boto3 documentation
# get_ml_model method definition
def get_ml_model(
    self,
    *,
    MLModelId: str,
    Verbose: bool = ...,
) -> GetMLModelOutputTypeDef:  # (1)
    ...# get_ml_model method usage example with argument unpacking
kwargs: GetMLModelInputTypeDef = {  # (1)
    "MLModelId": ...,
}
parent.get_ml_model(**kwargs)predict#
Generates a prediction for the observation using the specified ML
Model.
Type annotations and code completion for boto3.client("machinelearning").predict method.
 boto3 documentation
# predict method definition
def predict(
    self,
    *,
    MLModelId: str,
    Record: Mapping[str, str],
    PredictEndpoint: str,
) -> PredictOutputTypeDef:  # (1)
    ...# predict method usage example with argument unpacking
kwargs: PredictInputTypeDef = {  # (1)
    "MLModelId": ...,
    "Record": ...,
    "PredictEndpoint": ...,
}
parent.predict(**kwargs)update_batch_prediction#
Updates the BatchPredictionName of a BatchPrediction.
Type annotations and code completion for boto3.client("machinelearning").update_batch_prediction method.
 boto3 documentation
# update_batch_prediction method definition
def update_batch_prediction(
    self,
    *,
    BatchPredictionId: str,
    BatchPredictionName: str,
) -> UpdateBatchPredictionOutputTypeDef:  # (1)
    ...# update_batch_prediction method usage example with argument unpacking
kwargs: UpdateBatchPredictionInputTypeDef = {  # (1)
    "BatchPredictionId": ...,
    "BatchPredictionName": ...,
}
parent.update_batch_prediction(**kwargs)update_data_source#
Updates the DataSourceName of a DataSource.
Type annotations and code completion for boto3.client("machinelearning").update_data_source method.
 boto3 documentation
# update_data_source method definition
def update_data_source(
    self,
    *,
    DataSourceId: str,
    DataSourceName: str,
) -> UpdateDataSourceOutputTypeDef:  # (1)
    ...# update_data_source method usage example with argument unpacking
kwargs: UpdateDataSourceInputTypeDef = {  # (1)
    "DataSourceId": ...,
    "DataSourceName": ...,
}
parent.update_data_source(**kwargs)update_evaluation#
Updates the EvaluationName of an Evaluation.
Type annotations and code completion for boto3.client("machinelearning").update_evaluation method.
 boto3 documentation
# update_evaluation method definition
def update_evaluation(
    self,
    *,
    EvaluationId: str,
    EvaluationName: str,
) -> UpdateEvaluationOutputTypeDef:  # (1)
    ...# update_evaluation method usage example with argument unpacking
kwargs: UpdateEvaluationInputTypeDef = {  # (1)
    "EvaluationId": ...,
    "EvaluationName": ...,
}
parent.update_evaluation(**kwargs)update_ml_model#
Updates the MLModelName and the ScoreThreshold of an
MLModel.
Type annotations and code completion for boto3.client("machinelearning").update_ml_model method.
 boto3 documentation
# update_ml_model method definition
def update_ml_model(
    self,
    *,
    MLModelId: str,
    MLModelName: str = ...,
    ScoreThreshold: float = ...,
) -> UpdateMLModelOutputTypeDef:  # (1)
    ...# update_ml_model method usage example with argument unpacking
kwargs: UpdateMLModelInputTypeDef = {  # (1)
    "MLModelId": ...,
}
parent.update_ml_model(**kwargs)get_paginator#
Type annotations and code completion for boto3.client("machinelearning").get_paginator method with overloads.
- client.get_paginator("describe_batch_predictions")-> DescribeBatchPredictionsPaginator
- client.get_paginator("describe_data_sources")-> DescribeDataSourcesPaginator
- client.get_paginator("describe_evaluations")-> DescribeEvaluationsPaginator
- client.get_paginator("describe_ml_models")-> DescribeMLModelsPaginator
get_waiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter method with overloads.
- client.get_waiter("batch_prediction_available")-> BatchPredictionAvailableWaiter
- client.get_waiter("data_source_available")-> DataSourceAvailableWaiter
- client.get_waiter("evaluation_available")-> EvaluationAvailableWaiter
- client.get_waiter("ml_model_available")-> MLModelAvailableWaiter