Waiters#
Index > MachineLearning > Waiters
Auto-generated documentation for MachineLearning type annotations stubs module types-boto3-machinelearning.
BatchPredictionAvailableWaiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter("batch_prediction_available").
 boto3 documentation
# BatchPredictionAvailableWaiter usage example
from boto3.session import Session
from types_boto3_machinelearning.waiter import BatchPredictionAvailableWaiter
session = Session()
client = session.client("machinelearning")  # (1)
waiter: BatchPredictionAvailableWaiter = client.get_waiter("batch_prediction_available")  # (2)
await waiter.wait(...)- client: MachineLearningClient
- waiter: BatchPredictionAvailableWaiter
wait#
Type annotations and code completion for BatchPredictionAvailableWaiter.wait method.
# wait method definition
def wait(
    self,
    *,
    FilterVariable: BatchPredictionFilterVariableType = ...,  # (1)
    EQ: str = ...,
    GT: str = ...,
    LT: str = ...,
    GE: str = ...,
    LE: str = ...,
    NE: str = ...,
    Prefix: str = ...,
    SortOrder: SortOrderType = ...,  # (2)
    NextToken: str = ...,
    Limit: int = ...,
    WaiterConfig: WaiterConfigTypeDef = ...,  # (3)
) -> None:
    ...# wait method usage example with argument unpacking
kwargs: DescribeBatchPredictionsInputWaitTypeDef = {  # (1)
    "FilterVariable": ...,
}
parent.wait(**kwargs)DataSourceAvailableWaiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter("data_source_available").
 boto3 documentation
# DataSourceAvailableWaiter usage example
from boto3.session import Session
from types_boto3_machinelearning.waiter import DataSourceAvailableWaiter
session = Session()
client = session.client("machinelearning")  # (1)
waiter: DataSourceAvailableWaiter = client.get_waiter("data_source_available")  # (2)
await waiter.wait(...)- client: MachineLearningClient
- waiter: DataSourceAvailableWaiter
wait#
Type annotations and code completion for DataSourceAvailableWaiter.wait method.
# wait method definition
def wait(
    self,
    *,
    FilterVariable: DataSourceFilterVariableType = ...,  # (1)
    EQ: str = ...,
    GT: str = ...,
    LT: str = ...,
    GE: str = ...,
    LE: str = ...,
    NE: str = ...,
    Prefix: str = ...,
    SortOrder: SortOrderType = ...,  # (2)
    NextToken: str = ...,
    Limit: int = ...,
    WaiterConfig: WaiterConfigTypeDef = ...,  # (3)
) -> None:
    ...# wait method usage example with argument unpacking
kwargs: DescribeDataSourcesInputWaitTypeDef = {  # (1)
    "FilterVariable": ...,
}
parent.wait(**kwargs)EvaluationAvailableWaiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter("evaluation_available").
 boto3 documentation
# EvaluationAvailableWaiter usage example
from boto3.session import Session
from types_boto3_machinelearning.waiter import EvaluationAvailableWaiter
session = Session()
client = session.client("machinelearning")  # (1)
waiter: EvaluationAvailableWaiter = client.get_waiter("evaluation_available")  # (2)
await waiter.wait(...)- client: MachineLearningClient
- waiter: EvaluationAvailableWaiter
wait#
Type annotations and code completion for EvaluationAvailableWaiter.wait method.
# wait method definition
def wait(
    self,
    *,
    FilterVariable: EvaluationFilterVariableType = ...,  # (1)
    EQ: str = ...,
    GT: str = ...,
    LT: str = ...,
    GE: str = ...,
    LE: str = ...,
    NE: str = ...,
    Prefix: str = ...,
    SortOrder: SortOrderType = ...,  # (2)
    NextToken: str = ...,
    Limit: int = ...,
    WaiterConfig: WaiterConfigTypeDef = ...,  # (3)
) -> None:
    ...# wait method usage example with argument unpacking
kwargs: DescribeEvaluationsInputWaitTypeDef = {  # (1)
    "FilterVariable": ...,
}
parent.wait(**kwargs)MLModelAvailableWaiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter("ml_model_available").
 boto3 documentation
# MLModelAvailableWaiter usage example
from boto3.session import Session
from types_boto3_machinelearning.waiter import MLModelAvailableWaiter
session = Session()
client = session.client("machinelearning")  # (1)
waiter: MLModelAvailableWaiter = client.get_waiter("ml_model_available")  # (2)
await waiter.wait(...)- client: MachineLearningClient
- waiter: MLModelAvailableWaiter
wait#
Type annotations and code completion for MLModelAvailableWaiter.wait method.
# wait method definition
def wait(
    self,
    *,
    FilterVariable: MLModelFilterVariableType = ...,  # (1)
    EQ: str = ...,
    GT: str = ...,
    LT: str = ...,
    GE: str = ...,
    LE: str = ...,
    NE: str = ...,
    Prefix: str = ...,
    SortOrder: SortOrderType = ...,  # (2)
    NextToken: str = ...,
    Limit: int = ...,
    WaiterConfig: WaiterConfigTypeDef = ...,  # (3)
) -> None:
    ...# wait method usage example with argument unpacking
kwargs: DescribeMLModelsInputWaitTypeDef = {  # (1)
    "FilterVariable": ...,
}
parent.wait(**kwargs)