Waiters#
Index > MachineLearning > Waiters
Auto-generated documentation for MachineLearning type annotations stubs module mypy-boto3-machinelearning.
BatchPredictionAvailableWaiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter("batch_prediction_available")
.
boto3 documentation
# BatchPredictionAvailableWaiter usage example
from boto3.session import Session
from mypy_boto3_machinelearning.waiter import BatchPredictionAvailableWaiter
session = Session()
client = session.client("machinelearning") # (1)
waiter: BatchPredictionAvailableWaiter = client.get_waiter("batch_prediction_available") # (2)
await waiter.wait()
- client: MachineLearningClient
- waiter: BatchPredictionAvailableWaiter
wait#
Type annotations and code completion for BatchPredictionAvailableWaiter.wait
method.
# wait method definition
def wait(
self,
*,
FilterVariable: BatchPredictionFilterVariableType = ..., # (1)
EQ: str = ...,
GT: str = ...,
LT: str = ...,
GE: str = ...,
LE: str = ...,
NE: str = ...,
Prefix: str = ...,
SortOrder: SortOrderType = ..., # (2)
NextToken: str = ...,
Limit: int = ...,
WaiterConfig: WaiterConfigTypeDef = ..., # (3)
) -> None:
...
# wait method usage example with argument unpacking
kwargs: DescribeBatchPredictionsInputBatchPredictionAvailableWaitTypeDef = { # (1)
"FilterVariable": ...,
}
parent.wait(**kwargs)
DataSourceAvailableWaiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter("data_source_available")
.
boto3 documentation
# DataSourceAvailableWaiter usage example
from boto3.session import Session
from mypy_boto3_machinelearning.waiter import DataSourceAvailableWaiter
session = Session()
client = session.client("machinelearning") # (1)
waiter: DataSourceAvailableWaiter = client.get_waiter("data_source_available") # (2)
await waiter.wait()
- client: MachineLearningClient
- waiter: DataSourceAvailableWaiter
wait#
Type annotations and code completion for DataSourceAvailableWaiter.wait
method.
# wait method definition
def wait(
self,
*,
FilterVariable: DataSourceFilterVariableType = ..., # (1)
EQ: str = ...,
GT: str = ...,
LT: str = ...,
GE: str = ...,
LE: str = ...,
NE: str = ...,
Prefix: str = ...,
SortOrder: SortOrderType = ..., # (2)
NextToken: str = ...,
Limit: int = ...,
WaiterConfig: WaiterConfigTypeDef = ..., # (3)
) -> None:
...
# wait method usage example with argument unpacking
kwargs: DescribeDataSourcesInputDataSourceAvailableWaitTypeDef = { # (1)
"FilterVariable": ...,
}
parent.wait(**kwargs)
EvaluationAvailableWaiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter("evaluation_available")
.
boto3 documentation
# EvaluationAvailableWaiter usage example
from boto3.session import Session
from mypy_boto3_machinelearning.waiter import EvaluationAvailableWaiter
session = Session()
client = session.client("machinelearning") # (1)
waiter: EvaluationAvailableWaiter = client.get_waiter("evaluation_available") # (2)
await waiter.wait()
- client: MachineLearningClient
- waiter: EvaluationAvailableWaiter
wait#
Type annotations and code completion for EvaluationAvailableWaiter.wait
method.
# wait method definition
def wait(
self,
*,
FilterVariable: EvaluationFilterVariableType = ..., # (1)
EQ: str = ...,
GT: str = ...,
LT: str = ...,
GE: str = ...,
LE: str = ...,
NE: str = ...,
Prefix: str = ...,
SortOrder: SortOrderType = ..., # (2)
NextToken: str = ...,
Limit: int = ...,
WaiterConfig: WaiterConfigTypeDef = ..., # (3)
) -> None:
...
# wait method usage example with argument unpacking
kwargs: DescribeEvaluationsInputEvaluationAvailableWaitTypeDef = { # (1)
"FilterVariable": ...,
}
parent.wait(**kwargs)
MLModelAvailableWaiter#
Type annotations and code completion for boto3.client("machinelearning").get_waiter("ml_model_available")
.
boto3 documentation
# MLModelAvailableWaiter usage example
from boto3.session import Session
from mypy_boto3_machinelearning.waiter import MLModelAvailableWaiter
session = Session()
client = session.client("machinelearning") # (1)
waiter: MLModelAvailableWaiter = client.get_waiter("ml_model_available") # (2)
await waiter.wait()
- client: MachineLearningClient
- waiter: MLModelAvailableWaiter
wait#
Type annotations and code completion for MLModelAvailableWaiter.wait
method.
# wait method definition
def wait(
self,
*,
FilterVariable: MLModelFilterVariableType = ..., # (1)
EQ: str = ...,
GT: str = ...,
LT: str = ...,
GE: str = ...,
LE: str = ...,
NE: str = ...,
Prefix: str = ...,
SortOrder: SortOrderType = ..., # (2)
NextToken: str = ...,
Limit: int = ...,
WaiterConfig: WaiterConfigTypeDef = ..., # (3)
) -> None:
...
# wait method usage example with argument unpacking
kwargs: DescribeMLModelsInputMLModelAvailableWaitTypeDef = { # (1)
"FilterVariable": ...,
}
parent.wait(**kwargs)