NeptuneDataClient#
Index > NeptuneData > NeptuneDataClient
Auto-generated documentation for NeptuneData type annotations stubs module mypy-boto3-neptunedata.
NeptuneDataClient#
Type annotations and code completion for boto3.client("neptunedata")
.
boto3 documentation
# NeptuneDataClient usage example
from boto3.session import Session
from mypy_boto3_neptunedata.client import NeptuneDataClient
def get_neptunedata_client() -> NeptuneDataClient:
return Session().client("neptunedata")
Exceptions#
boto3
client exceptions are generated in runtime.
This class provides code completion for boto3.client("neptunedata").exceptions
structure.
# Exceptions.exceptions usage example
client = boto3.client("neptunedata")
try:
do_something(client)
except (
client.exceptions.AccessDeniedException,
client.exceptions.BadRequestException,
client.exceptions.BulkLoadIdNotFoundException,
client.exceptions.CancelledByUserException,
client.exceptions.ClientError,
client.exceptions.ClientTimeoutException,
client.exceptions.ConcurrentModificationException,
client.exceptions.ConstraintViolationException,
client.exceptions.ExpiredStreamException,
client.exceptions.FailureByQueryException,
client.exceptions.IllegalArgumentException,
client.exceptions.InternalFailureException,
client.exceptions.InvalidArgumentException,
client.exceptions.InvalidNumericDataException,
client.exceptions.InvalidParameterException,
client.exceptions.LoadUrlAccessDeniedException,
client.exceptions.MLResourceNotFoundException,
client.exceptions.MalformedQueryException,
client.exceptions.MemoryLimitExceededException,
client.exceptions.MethodNotAllowedException,
client.exceptions.MissingParameterException,
client.exceptions.ParsingException,
client.exceptions.PreconditionsFailedException,
client.exceptions.QueryLimitExceededException,
client.exceptions.QueryLimitException,
client.exceptions.QueryTooLargeException,
client.exceptions.ReadOnlyViolationException,
client.exceptions.S3Exception,
client.exceptions.ServerShutdownException,
client.exceptions.StatisticsNotAvailableException,
client.exceptions.StreamRecordsNotFoundException,
client.exceptions.ThrottlingException,
client.exceptions.TimeLimitExceededException,
client.exceptions.TooManyRequestsException,
client.exceptions.UnsupportedOperationException,
) as e:
print(e)
# Exceptions.exceptions type checking example
from mypy_boto3_neptunedata.client import Exceptions
def handle_error(exc: Exceptions.AccessDeniedException) -> None:
...
Methods#
can_paginate#
Check if an operation can be paginated.
Type annotations and code completion for boto3.client("neptunedata").can_paginate
method.
boto3 documentation
# can_paginate method definition
def can_paginate(
self,
operation_name: str,
) -> bool:
...
cancel_gremlin_query#
Cancels a Gremlin query.
Type annotations and code completion for boto3.client("neptunedata").cancel_gremlin_query
method.
boto3 documentation
# cancel_gremlin_query method definition
def cancel_gremlin_query(
self,
*,
queryId: str,
) -> CancelGremlinQueryOutputTypeDef: # (1)
...
# cancel_gremlin_query method usage example with argument unpacking
kwargs: CancelGremlinQueryInputRequestTypeDef = { # (1)
"queryId": ...,
}
parent.cancel_gremlin_query(**kwargs)
cancel_loader_job#
Cancels a specified load job.
Type annotations and code completion for boto3.client("neptunedata").cancel_loader_job
method.
boto3 documentation
# cancel_loader_job method definition
def cancel_loader_job(
self,
*,
loadId: str,
) -> CancelLoaderJobOutputTypeDef: # (1)
...
# cancel_loader_job method usage example with argument unpacking
kwargs: CancelLoaderJobInputRequestTypeDef = { # (1)
"loadId": ...,
}
parent.cancel_loader_job(**kwargs)
cancel_ml_data_processing_job#
Cancels a Neptune ML data processing job.
Type annotations and code completion for boto3.client("neptunedata").cancel_ml_data_processing_job
method.
boto3 documentation
# cancel_ml_data_processing_job method definition
def cancel_ml_data_processing_job(
self,
*,
id: str,
neptuneIamRoleArn: str = ...,
clean: bool = ...,
) -> CancelMLDataProcessingJobOutputTypeDef: # (1)
...
# cancel_ml_data_processing_job method usage example with argument unpacking
kwargs: CancelMLDataProcessingJobInputRequestTypeDef = { # (1)
"id": ...,
}
parent.cancel_ml_data_processing_job(**kwargs)
cancel_ml_model_training_job#
Cancels a Neptune ML model training job.
Type annotations and code completion for boto3.client("neptunedata").cancel_ml_model_training_job
method.
boto3 documentation
# cancel_ml_model_training_job method definition
def cancel_ml_model_training_job(
self,
*,
id: str,
neptuneIamRoleArn: str = ...,
clean: bool = ...,
) -> CancelMLModelTrainingJobOutputTypeDef: # (1)
...
# cancel_ml_model_training_job method usage example with argument unpacking
kwargs: CancelMLModelTrainingJobInputRequestTypeDef = { # (1)
"id": ...,
}
parent.cancel_ml_model_training_job(**kwargs)
cancel_ml_model_transform_job#
Cancels a specified model transform job.
Type annotations and code completion for boto3.client("neptunedata").cancel_ml_model_transform_job
method.
boto3 documentation
# cancel_ml_model_transform_job method definition
def cancel_ml_model_transform_job(
self,
*,
id: str,
neptuneIamRoleArn: str = ...,
clean: bool = ...,
) -> CancelMLModelTransformJobOutputTypeDef: # (1)
...
# cancel_ml_model_transform_job method usage example with argument unpacking
kwargs: CancelMLModelTransformJobInputRequestTypeDef = { # (1)
"id": ...,
}
parent.cancel_ml_model_transform_job(**kwargs)
cancel_open_cypher_query#
Cancels a specified openCypher query.
Type annotations and code completion for boto3.client("neptunedata").cancel_open_cypher_query
method.
boto3 documentation
# cancel_open_cypher_query method definition
def cancel_open_cypher_query(
self,
*,
queryId: str,
silent: bool = ...,
) -> CancelOpenCypherQueryOutputTypeDef: # (1)
...
# cancel_open_cypher_query method usage example with argument unpacking
kwargs: CancelOpenCypherQueryInputRequestTypeDef = { # (1)
"queryId": ...,
}
parent.cancel_open_cypher_query(**kwargs)
close#
Closes underlying endpoint connections.
Type annotations and code completion for boto3.client("neptunedata").close
method.
boto3 documentation
# close method definition
def close(
self,
) -> None:
...
create_ml_endpoint#
Creates a new Neptune ML inference endpoint that lets you query one specific model that the model-training process constructed.
Type annotations and code completion for boto3.client("neptunedata").create_ml_endpoint
method.
boto3 documentation
# create_ml_endpoint method definition
def create_ml_endpoint(
self,
*,
id: str = ...,
mlModelTrainingJobId: str = ...,
mlModelTransformJobId: str = ...,
update: bool = ...,
neptuneIamRoleArn: str = ...,
modelName: str = ...,
instanceType: str = ...,
instanceCount: int = ...,
volumeEncryptionKMSKey: str = ...,
) -> CreateMLEndpointOutputTypeDef: # (1)
...
# create_ml_endpoint method usage example with argument unpacking
kwargs: CreateMLEndpointInputRequestTypeDef = { # (1)
"id": ...,
}
parent.create_ml_endpoint(**kwargs)
delete_ml_endpoint#
Cancels the creation of a Neptune ML inference endpoint.
Type annotations and code completion for boto3.client("neptunedata").delete_ml_endpoint
method.
boto3 documentation
# delete_ml_endpoint method definition
def delete_ml_endpoint(
self,
*,
id: str,
neptuneIamRoleArn: str = ...,
clean: bool = ...,
) -> DeleteMLEndpointOutputTypeDef: # (1)
...
# delete_ml_endpoint method usage example with argument unpacking
kwargs: DeleteMLEndpointInputRequestTypeDef = { # (1)
"id": ...,
}
parent.delete_ml_endpoint(**kwargs)
delete_propertygraph_statistics#
Deletes statistics for Gremlin and openCypher (property graph) data.
Type annotations and code completion for boto3.client("neptunedata").delete_propertygraph_statistics
method.
boto3 documentation
# delete_propertygraph_statistics method definition
def delete_propertygraph_statistics(
self,
) -> DeletePropertygraphStatisticsOutputTypeDef: # (1)
...
delete_sparql_statistics#
Deletes SPARQL statistics When invoking this operation in a Neptune cluster
that has IAM authentication enabled, the IAM user or role making the request
must have a policy attached that allows the neptune-db:DeleteStatistics
<https://docs.aws.amazon.com/neptune/latest/userguide/iam-dp-actio...
.
Type annotations and code completion for boto3.client("neptunedata").delete_sparql_statistics
method.
boto3 documentation
# delete_sparql_statistics method definition
def delete_sparql_statistics(
self,
) -> DeleteSparqlStatisticsOutputTypeDef: # (1)
...
execute_fast_reset#
The fast reset REST API lets you reset a Neptune graph quicky and easily, removing all of its data.
Type annotations and code completion for boto3.client("neptunedata").execute_fast_reset
method.
boto3 documentation
# execute_fast_reset method definition
def execute_fast_reset(
self,
*,
action: ActionType, # (1)
token: str = ...,
) -> ExecuteFastResetOutputTypeDef: # (2)
...
# execute_fast_reset method usage example with argument unpacking
kwargs: ExecuteFastResetInputRequestTypeDef = { # (1)
"action": ...,
}
parent.execute_fast_reset(**kwargs)
execute_gremlin_explain_query#
Executes a Gremlin Explain query.
Type annotations and code completion for boto3.client("neptunedata").execute_gremlin_explain_query
method.
boto3 documentation
# execute_gremlin_explain_query method definition
def execute_gremlin_explain_query(
self,
*,
gremlinQuery: str,
) -> ExecuteGremlinExplainQueryOutputTypeDef: # (1)
...
# execute_gremlin_explain_query method usage example with argument unpacking
kwargs: ExecuteGremlinExplainQueryInputRequestTypeDef = { # (1)
"gremlinQuery": ...,
}
parent.execute_gremlin_explain_query(**kwargs)
execute_gremlin_profile_query#
Executes a Gremlin Profile query, which runs a specified traversal, collects various metrics about the run, and produces a profile report as output.
Type annotations and code completion for boto3.client("neptunedata").execute_gremlin_profile_query
method.
boto3 documentation
# execute_gremlin_profile_query method definition
def execute_gremlin_profile_query(
self,
*,
gremlinQuery: str,
results: bool = ...,
chop: int = ...,
serializer: str = ...,
indexOps: bool = ...,
) -> ExecuteGremlinProfileQueryOutputTypeDef: # (1)
...
# execute_gremlin_profile_query method usage example with argument unpacking
kwargs: ExecuteGremlinProfileQueryInputRequestTypeDef = { # (1)
"gremlinQuery": ...,
}
parent.execute_gremlin_profile_query(**kwargs)
execute_gremlin_query#
This commands executes a Gremlin query.
Type annotations and code completion for boto3.client("neptunedata").execute_gremlin_query
method.
boto3 documentation
# execute_gremlin_query method definition
def execute_gremlin_query(
self,
*,
gremlinQuery: str,
serializer: str = ...,
) -> ExecuteGremlinQueryOutputTypeDef: # (1)
...
# execute_gremlin_query method usage example with argument unpacking
kwargs: ExecuteGremlinQueryInputRequestTypeDef = { # (1)
"gremlinQuery": ...,
}
parent.execute_gremlin_query(**kwargs)
execute_open_cypher_explain_query#
Executes an openCypher explain
request.
Type annotations and code completion for boto3.client("neptunedata").execute_open_cypher_explain_query
method.
boto3 documentation
# execute_open_cypher_explain_query method definition
def execute_open_cypher_explain_query(
self,
*,
openCypherQuery: str,
explainMode: OpenCypherExplainModeType, # (1)
parameters: str = ...,
) -> ExecuteOpenCypherExplainQueryOutputTypeDef: # (2)
...
# execute_open_cypher_explain_query method usage example with argument unpacking
kwargs: ExecuteOpenCypherExplainQueryInputRequestTypeDef = { # (1)
"openCypherQuery": ...,
"explainMode": ...,
}
parent.execute_open_cypher_explain_query(**kwargs)
execute_open_cypher_query#
Executes an openCypher query.
Type annotations and code completion for boto3.client("neptunedata").execute_open_cypher_query
method.
boto3 documentation
# execute_open_cypher_query method definition
def execute_open_cypher_query(
self,
*,
openCypherQuery: str,
parameters: str = ...,
) -> ExecuteOpenCypherQueryOutputTypeDef: # (1)
...
# execute_open_cypher_query method usage example with argument unpacking
kwargs: ExecuteOpenCypherQueryInputRequestTypeDef = { # (1)
"openCypherQuery": ...,
}
parent.execute_open_cypher_query(**kwargs)
generate_presigned_url#
Generate a presigned url given a client, its method, and arguments.
Type annotations and code completion for boto3.client("neptunedata").generate_presigned_url
method.
boto3 documentation
# generate_presigned_url method definition
def generate_presigned_url(
self,
ClientMethod: str,
Params: Mapping[str, Any] = ...,
ExpiresIn: int = 3600,
HttpMethod: str = ...,
) -> str:
...
get_engine_status#
Retrieves the status of the graph database on the host.
Type annotations and code completion for boto3.client("neptunedata").get_engine_status
method.
boto3 documentation
# get_engine_status method definition
def get_engine_status(
self,
) -> GetEngineStatusOutputTypeDef: # (1)
...
get_gremlin_query_status#
Gets the status of a specified Gremlin query.
Type annotations and code completion for boto3.client("neptunedata").get_gremlin_query_status
method.
boto3 documentation
# get_gremlin_query_status method definition
def get_gremlin_query_status(
self,
*,
queryId: str,
) -> GetGremlinQueryStatusOutputTypeDef: # (1)
...
# get_gremlin_query_status method usage example with argument unpacking
kwargs: GetGremlinQueryStatusInputRequestTypeDef = { # (1)
"queryId": ...,
}
parent.get_gremlin_query_status(**kwargs)
get_loader_job_status#
Gets status information about a specified load job.
Type annotations and code completion for boto3.client("neptunedata").get_loader_job_status
method.
boto3 documentation
# get_loader_job_status method definition
def get_loader_job_status(
self,
*,
loadId: str,
details: bool = ...,
errors: bool = ...,
page: int = ...,
errorsPerPage: int = ...,
) -> GetLoaderJobStatusOutputTypeDef: # (1)
...
# get_loader_job_status method usage example with argument unpacking
kwargs: GetLoaderJobStatusInputRequestTypeDef = { # (1)
"loadId": ...,
}
parent.get_loader_job_status(**kwargs)
get_ml_data_processing_job#
Retrieves information about a specified data processing job.
Type annotations and code completion for boto3.client("neptunedata").get_ml_data_processing_job
method.
boto3 documentation
# get_ml_data_processing_job method definition
def get_ml_data_processing_job(
self,
*,
id: str,
neptuneIamRoleArn: str = ...,
) -> GetMLDataProcessingJobOutputTypeDef: # (1)
...
# get_ml_data_processing_job method usage example with argument unpacking
kwargs: GetMLDataProcessingJobInputRequestTypeDef = { # (1)
"id": ...,
}
parent.get_ml_data_processing_job(**kwargs)
get_ml_endpoint#
Retrieves details about an inference endpoint.
Type annotations and code completion for boto3.client("neptunedata").get_ml_endpoint
method.
boto3 documentation
# get_ml_endpoint method definition
def get_ml_endpoint(
self,
*,
id: str,
neptuneIamRoleArn: str = ...,
) -> GetMLEndpointOutputTypeDef: # (1)
...
# get_ml_endpoint method usage example with argument unpacking
kwargs: GetMLEndpointInputRequestTypeDef = { # (1)
"id": ...,
}
parent.get_ml_endpoint(**kwargs)
get_ml_model_training_job#
Retrieves information about a Neptune ML model training job.
Type annotations and code completion for boto3.client("neptunedata").get_ml_model_training_job
method.
boto3 documentation
# get_ml_model_training_job method definition
def get_ml_model_training_job(
self,
*,
id: str,
neptuneIamRoleArn: str = ...,
) -> GetMLModelTrainingJobOutputTypeDef: # (1)
...
# get_ml_model_training_job method usage example with argument unpacking
kwargs: GetMLModelTrainingJobInputRequestTypeDef = { # (1)
"id": ...,
}
parent.get_ml_model_training_job(**kwargs)
get_ml_model_transform_job#
Gets information about a specified model transform job.
Type annotations and code completion for boto3.client("neptunedata").get_ml_model_transform_job
method.
boto3 documentation
# get_ml_model_transform_job method definition
def get_ml_model_transform_job(
self,
*,
id: str,
neptuneIamRoleArn: str = ...,
) -> GetMLModelTransformJobOutputTypeDef: # (1)
...
# get_ml_model_transform_job method usage example with argument unpacking
kwargs: GetMLModelTransformJobInputRequestTypeDef = { # (1)
"id": ...,
}
parent.get_ml_model_transform_job(**kwargs)
get_open_cypher_query_status#
Retrieves the status of a specified openCypher query.
Type annotations and code completion for boto3.client("neptunedata").get_open_cypher_query_status
method.
boto3 documentation
# get_open_cypher_query_status method definition
def get_open_cypher_query_status(
self,
*,
queryId: str,
) -> GetOpenCypherQueryStatusOutputTypeDef: # (1)
...
# get_open_cypher_query_status method usage example with argument unpacking
kwargs: GetOpenCypherQueryStatusInputRequestTypeDef = { # (1)
"queryId": ...,
}
parent.get_open_cypher_query_status(**kwargs)
get_propertygraph_statistics#
Gets property graph statistics (Gremlin and openCypher).
Type annotations and code completion for boto3.client("neptunedata").get_propertygraph_statistics
method.
boto3 documentation
# get_propertygraph_statistics method definition
def get_propertygraph_statistics(
self,
) -> GetPropertygraphStatisticsOutputTypeDef: # (1)
...
get_propertygraph_stream#
Gets a stream for a property graph.
Type annotations and code completion for boto3.client("neptunedata").get_propertygraph_stream
method.
boto3 documentation
# get_propertygraph_stream method definition
def get_propertygraph_stream(
self,
*,
limit: int = ...,
iteratorType: IteratorTypeType = ..., # (1)
commitNum: int = ...,
opNum: int = ...,
encoding: EncodingType = ..., # (2)
) -> GetPropertygraphStreamOutputTypeDef: # (3)
...
# get_propertygraph_stream method usage example with argument unpacking
kwargs: GetPropertygraphStreamInputRequestTypeDef = { # (1)
"limit": ...,
}
parent.get_propertygraph_stream(**kwargs)
get_propertygraph_summary#
Gets a graph summary for a property graph.
Type annotations and code completion for boto3.client("neptunedata").get_propertygraph_summary
method.
boto3 documentation
# get_propertygraph_summary method definition
def get_propertygraph_summary(
self,
*,
mode: GraphSummaryTypeType = ..., # (1)
) -> GetPropertygraphSummaryOutputTypeDef: # (2)
...
# get_propertygraph_summary method usage example with argument unpacking
kwargs: GetPropertygraphSummaryInputRequestTypeDef = { # (1)
"mode": ...,
}
parent.get_propertygraph_summary(**kwargs)
get_rdf_graph_summary#
Gets a graph summary for an RDF graph.
Type annotations and code completion for boto3.client("neptunedata").get_rdf_graph_summary
method.
boto3 documentation
# get_rdf_graph_summary method definition
def get_rdf_graph_summary(
self,
*,
mode: GraphSummaryTypeType = ..., # (1)
) -> GetRDFGraphSummaryOutputTypeDef: # (2)
...
# get_rdf_graph_summary method usage example with argument unpacking
kwargs: GetRDFGraphSummaryInputRequestTypeDef = { # (1)
"mode": ...,
}
parent.get_rdf_graph_summary(**kwargs)
get_sparql_statistics#
Gets RDF statistics (SPARQL).
Type annotations and code completion for boto3.client("neptunedata").get_sparql_statistics
method.
boto3 documentation
# get_sparql_statistics method definition
def get_sparql_statistics(
self,
) -> GetSparqlStatisticsOutputTypeDef: # (1)
...
get_sparql_stream#
Gets a stream for an RDF graph.
Type annotations and code completion for boto3.client("neptunedata").get_sparql_stream
method.
boto3 documentation
# get_sparql_stream method definition
def get_sparql_stream(
self,
*,
limit: int = ...,
iteratorType: IteratorTypeType = ..., # (1)
commitNum: int = ...,
opNum: int = ...,
encoding: EncodingType = ..., # (2)
) -> GetSparqlStreamOutputTypeDef: # (3)
...
- See IteratorTypeType
- See EncodingType
- See GetSparqlStreamOutputTypeDef
# get_sparql_stream method usage example with argument unpacking
kwargs: GetSparqlStreamInputRequestTypeDef = { # (1)
"limit": ...,
}
parent.get_sparql_stream(**kwargs)
list_gremlin_queries#
Lists active Gremlin queries.
Type annotations and code completion for boto3.client("neptunedata").list_gremlin_queries
method.
boto3 documentation
# list_gremlin_queries method definition
def list_gremlin_queries(
self,
*,
includeWaiting: bool = ...,
) -> ListGremlinQueriesOutputTypeDef: # (1)
...
# list_gremlin_queries method usage example with argument unpacking
kwargs: ListGremlinQueriesInputRequestTypeDef = { # (1)
"includeWaiting": ...,
}
parent.list_gremlin_queries(**kwargs)
list_loader_jobs#
Retrieves a list of the loadIds
for all active loader jobs.
Type annotations and code completion for boto3.client("neptunedata").list_loader_jobs
method.
boto3 documentation
# list_loader_jobs method definition
def list_loader_jobs(
self,
*,
limit: int = ...,
includeQueuedLoads: bool = ...,
) -> ListLoaderJobsOutputTypeDef: # (1)
...
# list_loader_jobs method usage example with argument unpacking
kwargs: ListLoaderJobsInputRequestTypeDef = { # (1)
"limit": ...,
}
parent.list_loader_jobs(**kwargs)
list_ml_data_processing_jobs#
Returns a list of Neptune ML data processing jobs.
Type annotations and code completion for boto3.client("neptunedata").list_ml_data_processing_jobs
method.
boto3 documentation
# list_ml_data_processing_jobs method definition
def list_ml_data_processing_jobs(
self,
*,
maxItems: int = ...,
neptuneIamRoleArn: str = ...,
) -> ListMLDataProcessingJobsOutputTypeDef: # (1)
...
# list_ml_data_processing_jobs method usage example with argument unpacking
kwargs: ListMLDataProcessingJobsInputRequestTypeDef = { # (1)
"maxItems": ...,
}
parent.list_ml_data_processing_jobs(**kwargs)
list_ml_endpoints#
Lists existing inference endpoints.
Type annotations and code completion for boto3.client("neptunedata").list_ml_endpoints
method.
boto3 documentation
# list_ml_endpoints method definition
def list_ml_endpoints(
self,
*,
maxItems: int = ...,
neptuneIamRoleArn: str = ...,
) -> ListMLEndpointsOutputTypeDef: # (1)
...
# list_ml_endpoints method usage example with argument unpacking
kwargs: ListMLEndpointsInputRequestTypeDef = { # (1)
"maxItems": ...,
}
parent.list_ml_endpoints(**kwargs)
list_ml_model_training_jobs#
Lists Neptune ML model-training jobs.
Type annotations and code completion for boto3.client("neptunedata").list_ml_model_training_jobs
method.
boto3 documentation
# list_ml_model_training_jobs method definition
def list_ml_model_training_jobs(
self,
*,
maxItems: int = ...,
neptuneIamRoleArn: str = ...,
) -> ListMLModelTrainingJobsOutputTypeDef: # (1)
...
# list_ml_model_training_jobs method usage example with argument unpacking
kwargs: ListMLModelTrainingJobsInputRequestTypeDef = { # (1)
"maxItems": ...,
}
parent.list_ml_model_training_jobs(**kwargs)
list_ml_model_transform_jobs#
Returns a list of model transform job IDs.
Type annotations and code completion for boto3.client("neptunedata").list_ml_model_transform_jobs
method.
boto3 documentation
# list_ml_model_transform_jobs method definition
def list_ml_model_transform_jobs(
self,
*,
maxItems: int = ...,
neptuneIamRoleArn: str = ...,
) -> ListMLModelTransformJobsOutputTypeDef: # (1)
...
# list_ml_model_transform_jobs method usage example with argument unpacking
kwargs: ListMLModelTransformJobsInputRequestTypeDef = { # (1)
"maxItems": ...,
}
parent.list_ml_model_transform_jobs(**kwargs)
list_open_cypher_queries#
Lists active openCypher queries.
Type annotations and code completion for boto3.client("neptunedata").list_open_cypher_queries
method.
boto3 documentation
# list_open_cypher_queries method definition
def list_open_cypher_queries(
self,
*,
includeWaiting: bool = ...,
) -> ListOpenCypherQueriesOutputTypeDef: # (1)
...
# list_open_cypher_queries method usage example with argument unpacking
kwargs: ListOpenCypherQueriesInputRequestTypeDef = { # (1)
"includeWaiting": ...,
}
parent.list_open_cypher_queries(**kwargs)
manage_propertygraph_statistics#
Manages the generation and use of property graph statistics.
Type annotations and code completion for boto3.client("neptunedata").manage_propertygraph_statistics
method.
boto3 documentation
# manage_propertygraph_statistics method definition
def manage_propertygraph_statistics(
self,
*,
mode: StatisticsAutoGenerationModeType = ..., # (1)
) -> ManagePropertygraphStatisticsOutputTypeDef: # (2)
...
# manage_propertygraph_statistics method usage example with argument unpacking
kwargs: ManagePropertygraphStatisticsInputRequestTypeDef = { # (1)
"mode": ...,
}
parent.manage_propertygraph_statistics(**kwargs)
manage_sparql_statistics#
Manages the generation and use of RDF graph statistics.
Type annotations and code completion for boto3.client("neptunedata").manage_sparql_statistics
method.
boto3 documentation
# manage_sparql_statistics method definition
def manage_sparql_statistics(
self,
*,
mode: StatisticsAutoGenerationModeType = ..., # (1)
) -> ManageSparqlStatisticsOutputTypeDef: # (2)
...
# manage_sparql_statistics method usage example with argument unpacking
kwargs: ManageSparqlStatisticsInputRequestTypeDef = { # (1)
"mode": ...,
}
parent.manage_sparql_statistics(**kwargs)
start_loader_job#
Starts a Neptune bulk loader job to load data from an Amazon S3 bucket into a Neptune DB instance.
Type annotations and code completion for boto3.client("neptunedata").start_loader_job
method.
boto3 documentation
# start_loader_job method definition
def start_loader_job(
self,
*,
source: str,
format: FormatType, # (1)
s3BucketRegion: S3BucketRegionType, # (2)
iamRoleArn: str,
mode: ModeType = ..., # (3)
failOnError: bool = ...,
parallelism: ParallelismType = ..., # (4)
parserConfiguration: Mapping[str, str] = ...,
updateSingleCardinalityProperties: bool = ...,
queueRequest: bool = ...,
dependencies: Sequence[str] = ...,
userProvidedEdgeIds: bool = ...,
) -> StartLoaderJobOutputTypeDef: # (5)
...
- See FormatType
- See S3BucketRegionType
- See ModeType
- See ParallelismType
- See StartLoaderJobOutputTypeDef
# start_loader_job method usage example with argument unpacking
kwargs: StartLoaderJobInputRequestTypeDef = { # (1)
"source": ...,
"format": ...,
"s3BucketRegion": ...,
"iamRoleArn": ...,
}
parent.start_loader_job(**kwargs)
start_ml_data_processing_job#
Creates a new Neptune ML data processing job for processing the graph data exported from Neptune for training.
Type annotations and code completion for boto3.client("neptunedata").start_ml_data_processing_job
method.
boto3 documentation
# start_ml_data_processing_job method definition
def start_ml_data_processing_job(
self,
*,
inputDataS3Location: str,
processedDataS3Location: str,
id: str = ...,
previousDataProcessingJobId: str = ...,
sagemakerIamRoleArn: str = ...,
neptuneIamRoleArn: str = ...,
processingInstanceType: str = ...,
processingInstanceVolumeSizeInGB: int = ...,
processingTimeOutInSeconds: int = ...,
modelType: str = ...,
configFileName: str = ...,
subnets: Sequence[str] = ...,
securityGroupIds: Sequence[str] = ...,
volumeEncryptionKMSKey: str = ...,
s3OutputEncryptionKMSKey: str = ...,
) -> StartMLDataProcessingJobOutputTypeDef: # (1)
...
# start_ml_data_processing_job method usage example with argument unpacking
kwargs: StartMLDataProcessingJobInputRequestTypeDef = { # (1)
"inputDataS3Location": ...,
"processedDataS3Location": ...,
}
parent.start_ml_data_processing_job(**kwargs)
start_ml_model_training_job#
Creates a new Neptune ML model training job.
Type annotations and code completion for boto3.client("neptunedata").start_ml_model_training_job
method.
boto3 documentation
# start_ml_model_training_job method definition
def start_ml_model_training_job(
self,
*,
dataProcessingJobId: str,
trainModelS3Location: str,
id: str = ...,
previousModelTrainingJobId: str = ...,
sagemakerIamRoleArn: str = ...,
neptuneIamRoleArn: str = ...,
baseProcessingInstanceType: str = ...,
trainingInstanceType: str = ...,
trainingInstanceVolumeSizeInGB: int = ...,
trainingTimeOutInSeconds: int = ...,
maxHPONumberOfTrainingJobs: int = ...,
maxHPOParallelTrainingJobs: int = ...,
subnets: Sequence[str] = ...,
securityGroupIds: Sequence[str] = ...,
volumeEncryptionKMSKey: str = ...,
s3OutputEncryptionKMSKey: str = ...,
enableManagedSpotTraining: bool = ...,
customModelTrainingParameters: CustomModelTrainingParametersTypeDef = ..., # (1)
) -> StartMLModelTrainingJobOutputTypeDef: # (2)
...
# start_ml_model_training_job method usage example with argument unpacking
kwargs: StartMLModelTrainingJobInputRequestTypeDef = { # (1)
"dataProcessingJobId": ...,
"trainModelS3Location": ...,
}
parent.start_ml_model_training_job(**kwargs)
start_ml_model_transform_job#
Creates a new model transform job.
Type annotations and code completion for boto3.client("neptunedata").start_ml_model_transform_job
method.
boto3 documentation
# start_ml_model_transform_job method definition
def start_ml_model_transform_job(
self,
*,
modelTransformOutputS3Location: str,
id: str = ...,
dataProcessingJobId: str = ...,
mlModelTrainingJobId: str = ...,
trainingJobName: str = ...,
sagemakerIamRoleArn: str = ...,
neptuneIamRoleArn: str = ...,
customModelTransformParameters: CustomModelTransformParametersTypeDef = ..., # (1)
baseProcessingInstanceType: str = ...,
baseProcessingInstanceVolumeSizeInGB: int = ...,
subnets: Sequence[str] = ...,
securityGroupIds: Sequence[str] = ...,
volumeEncryptionKMSKey: str = ...,
s3OutputEncryptionKMSKey: str = ...,
) -> StartMLModelTransformJobOutputTypeDef: # (2)
...
# start_ml_model_transform_job method usage example with argument unpacking
kwargs: StartMLModelTransformJobInputRequestTypeDef = { # (1)
"modelTransformOutputS3Location": ...,
}
parent.start_ml_model_transform_job(**kwargs)