PersonalizeClient#
Index > Personalize > PersonalizeClient
Auto-generated documentation for Personalize type annotations stubs module mypy-boto3-personalize.
PersonalizeClient#
Type annotations and code completion for boto3.client("personalize")
.
boto3 documentation
# PersonalizeClient usage example
from boto3.session import Session
from mypy_boto3_personalize.client import PersonalizeClient
def get_personalize_client() -> PersonalizeClient:
return Session().client("personalize")
Exceptions#
boto3
client exceptions are generated in runtime.
This class provides code completion for boto3.client("personalize").exceptions
structure.
# Exceptions.exceptions usage example
client = boto3.client("personalize")
try:
do_something(client)
except (
client.exceptions.ClientError,
client.exceptions.InvalidInputException,
client.exceptions.InvalidNextTokenException,
client.exceptions.LimitExceededException,
client.exceptions.ResourceAlreadyExistsException,
client.exceptions.ResourceInUseException,
client.exceptions.ResourceNotFoundException,
client.exceptions.TooManyTagKeysException,
client.exceptions.TooManyTagsException,
) as e:
print(e)
# Exceptions.exceptions type checking example
from mypy_boto3_personalize.client import Exceptions
def handle_error(exc: Exceptions.ClientError) -> None:
...
Methods#
can_paginate#
Type annotations and code completion for boto3.client("personalize").can_paginate
method.
boto3 documentation
# can_paginate method definition
def can_paginate(
self,
operation_name: str,
) -> bool:
...
generate_presigned_url#
Type annotations and code completion for boto3.client("personalize").generate_presigned_url
method.
boto3 documentation
# generate_presigned_url method definition
def generate_presigned_url(
self,
ClientMethod: str,
Params: Mapping[str, Any] = ...,
ExpiresIn: int = 3600,
HttpMethod: str = ...,
) -> str:
...
create_batch_inference_job#
Generates batch recommendations based on a list of items or users stored in Amazon S3 and exports the recommendations to an Amazon S3 bucket.
Type annotations and code completion for boto3.client("personalize").create_batch_inference_job
method.
boto3 documentation
# create_batch_inference_job method definition
def create_batch_inference_job(
self,
*,
jobName: str,
solutionVersionArn: str,
jobInput: BatchInferenceJobInputTypeDef, # (1)
jobOutput: BatchInferenceJobOutputTypeDef, # (2)
roleArn: str,
filterArn: str = ...,
numResults: int = ...,
batchInferenceJobConfig: BatchInferenceJobConfigTypeDef = ..., # (3)
tags: Sequence[TagTypeDef] = ..., # (4)
batchInferenceJobMode: BatchInferenceJobModeType = ..., # (5)
themeGenerationConfig: ThemeGenerationConfigTypeDef = ..., # (6)
) -> CreateBatchInferenceJobResponseTypeDef: # (7)
...
- See BatchInferenceJobInputTypeDef
- See BatchInferenceJobOutputTypeDef
- See BatchInferenceJobConfigTypeDef
- See TagTypeDef
- See BatchInferenceJobModeType
- See ThemeGenerationConfigTypeDef
- See CreateBatchInferenceJobResponseTypeDef
# create_batch_inference_job method usage example with argument unpacking
kwargs: CreateBatchInferenceJobRequestRequestTypeDef = { # (1)
"jobName": ...,
"solutionVersionArn": ...,
"jobInput": ...,
"jobOutput": ...,
"roleArn": ...,
}
parent.create_batch_inference_job(**kwargs)
create_batch_segment_job#
Creates a batch segment job.
Type annotations and code completion for boto3.client("personalize").create_batch_segment_job
method.
boto3 documentation
# create_batch_segment_job method definition
def create_batch_segment_job(
self,
*,
jobName: str,
solutionVersionArn: str,
jobInput: BatchSegmentJobInputTypeDef, # (1)
jobOutput: BatchSegmentJobOutputTypeDef, # (2)
roleArn: str,
filterArn: str = ...,
numResults: int = ...,
tags: Sequence[TagTypeDef] = ..., # (3)
) -> CreateBatchSegmentJobResponseTypeDef: # (4)
...
- See BatchSegmentJobInputTypeDef
- See BatchSegmentJobOutputTypeDef
- See TagTypeDef
- See CreateBatchSegmentJobResponseTypeDef
# create_batch_segment_job method usage example with argument unpacking
kwargs: CreateBatchSegmentJobRequestRequestTypeDef = { # (1)
"jobName": ...,
"solutionVersionArn": ...,
"jobInput": ...,
"jobOutput": ...,
"roleArn": ...,
}
parent.create_batch_segment_job(**kwargs)
create_campaign#
You incur campaign costs while it is active.
Type annotations and code completion for boto3.client("personalize").create_campaign
method.
boto3 documentation
# create_campaign method definition
def create_campaign(
self,
*,
name: str,
solutionVersionArn: str,
minProvisionedTPS: int = ...,
campaignConfig: CampaignConfigTypeDef = ..., # (1)
tags: Sequence[TagTypeDef] = ..., # (2)
) -> CreateCampaignResponseTypeDef: # (3)
...
# create_campaign method usage example with argument unpacking
kwargs: CreateCampaignRequestRequestTypeDef = { # (1)
"name": ...,
"solutionVersionArn": ...,
}
parent.create_campaign(**kwargs)
create_data_deletion_job#
Creates a batch job that deletes all references to specific users from an Amazon Personalize dataset group in batches.
Type annotations and code completion for boto3.client("personalize").create_data_deletion_job
method.
boto3 documentation
# create_data_deletion_job method definition
def create_data_deletion_job(
self,
*,
jobName: str,
datasetGroupArn: str,
dataSource: DataSourceTypeDef, # (1)
roleArn: str,
tags: Sequence[TagTypeDef] = ..., # (2)
) -> CreateDataDeletionJobResponseTypeDef: # (3)
...
# create_data_deletion_job method usage example with argument unpacking
kwargs: CreateDataDeletionJobRequestRequestTypeDef = { # (1)
"jobName": ...,
"datasetGroupArn": ...,
"dataSource": ...,
"roleArn": ...,
}
parent.create_data_deletion_job(**kwargs)
create_dataset#
Creates an empty dataset and adds it to the specified dataset group.
Type annotations and code completion for boto3.client("personalize").create_dataset
method.
boto3 documentation
# create_dataset method definition
def create_dataset(
self,
*,
name: str,
schemaArn: str,
datasetGroupArn: str,
datasetType: str,
tags: Sequence[TagTypeDef] = ..., # (1)
) -> CreateDatasetResponseTypeDef: # (2)
...
# create_dataset method usage example with argument unpacking
kwargs: CreateDatasetRequestRequestTypeDef = { # (1)
"name": ...,
"schemaArn": ...,
"datasetGroupArn": ...,
"datasetType": ...,
}
parent.create_dataset(**kwargs)
create_dataset_export_job#
Creates a job that exports data from your dataset to an Amazon S3 bucket.
Type annotations and code completion for boto3.client("personalize").create_dataset_export_job
method.
boto3 documentation
# create_dataset_export_job method definition
def create_dataset_export_job(
self,
*,
jobName: str,
datasetArn: str,
roleArn: str,
jobOutput: DatasetExportJobOutputTypeDef, # (1)
ingestionMode: IngestionModeType = ..., # (2)
tags: Sequence[TagTypeDef] = ..., # (3)
) -> CreateDatasetExportJobResponseTypeDef: # (4)
...
- See DatasetExportJobOutputTypeDef
- See IngestionModeType
- See TagTypeDef
- See CreateDatasetExportJobResponseTypeDef
# create_dataset_export_job method usage example with argument unpacking
kwargs: CreateDatasetExportJobRequestRequestTypeDef = { # (1)
"jobName": ...,
"datasetArn": ...,
"roleArn": ...,
"jobOutput": ...,
}
parent.create_dataset_export_job(**kwargs)
create_dataset_group#
Creates an empty dataset group.
Type annotations and code completion for boto3.client("personalize").create_dataset_group
method.
boto3 documentation
# create_dataset_group method definition
def create_dataset_group(
self,
*,
name: str,
roleArn: str = ...,
kmsKeyArn: str = ...,
domain: DomainType = ..., # (1)
tags: Sequence[TagTypeDef] = ..., # (2)
) -> CreateDatasetGroupResponseTypeDef: # (3)
...
- See DomainType
- See TagTypeDef
- See CreateDatasetGroupResponseTypeDef
# create_dataset_group method usage example with argument unpacking
kwargs: CreateDatasetGroupRequestRequestTypeDef = { # (1)
"name": ...,
}
parent.create_dataset_group(**kwargs)
create_dataset_import_job#
Creates a job that imports training data from your data source (an Amazon S3 bucket) to an Amazon Personalize dataset.
Type annotations and code completion for boto3.client("personalize").create_dataset_import_job
method.
boto3 documentation
# create_dataset_import_job method definition
def create_dataset_import_job(
self,
*,
jobName: str,
datasetArn: str,
dataSource: DataSourceTypeDef, # (1)
roleArn: str,
tags: Sequence[TagTypeDef] = ..., # (2)
importMode: ImportModeType = ..., # (3)
publishAttributionMetricsToS3: bool = ...,
) -> CreateDatasetImportJobResponseTypeDef: # (4)
...
# create_dataset_import_job method usage example with argument unpacking
kwargs: CreateDatasetImportJobRequestRequestTypeDef = { # (1)
"jobName": ...,
"datasetArn": ...,
"dataSource": ...,
"roleArn": ...,
}
parent.create_dataset_import_job(**kwargs)
create_event_tracker#
Creates an event tracker that you use when adding event data to a specified dataset group using the PutEvents API.
Type annotations and code completion for boto3.client("personalize").create_event_tracker
method.
boto3 documentation
# create_event_tracker method definition
def create_event_tracker(
self,
*,
name: str,
datasetGroupArn: str,
tags: Sequence[TagTypeDef] = ..., # (1)
) -> CreateEventTrackerResponseTypeDef: # (2)
...
# create_event_tracker method usage example with argument unpacking
kwargs: CreateEventTrackerRequestRequestTypeDef = { # (1)
"name": ...,
"datasetGroupArn": ...,
}
parent.create_event_tracker(**kwargs)
create_filter#
Creates a recommendation filter.
Type annotations and code completion for boto3.client("personalize").create_filter
method.
boto3 documentation
# create_filter method definition
def create_filter(
self,
*,
name: str,
datasetGroupArn: str,
filterExpression: str,
tags: Sequence[TagTypeDef] = ..., # (1)
) -> CreateFilterResponseTypeDef: # (2)
...
# create_filter method usage example with argument unpacking
kwargs: CreateFilterRequestRequestTypeDef = { # (1)
"name": ...,
"datasetGroupArn": ...,
"filterExpression": ...,
}
parent.create_filter(**kwargs)
create_metric_attribution#
Creates a metric attribution.
Type annotations and code completion for boto3.client("personalize").create_metric_attribution
method.
boto3 documentation
# create_metric_attribution method definition
def create_metric_attribution(
self,
*,
name: str,
datasetGroupArn: str,
metrics: Sequence[MetricAttributeTypeDef], # (1)
metricsOutputConfig: MetricAttributionOutputTypeDef, # (2)
) -> CreateMetricAttributionResponseTypeDef: # (3)
...
- See MetricAttributeTypeDef
- See MetricAttributionOutputTypeDef
- See CreateMetricAttributionResponseTypeDef
# create_metric_attribution method usage example with argument unpacking
kwargs: CreateMetricAttributionRequestRequestTypeDef = { # (1)
"name": ...,
"datasetGroupArn": ...,
"metrics": ...,
"metricsOutputConfig": ...,
}
parent.create_metric_attribution(**kwargs)
create_recommender#
Creates a recommender with the recipe (a Domain dataset group use case) you specify.
Type annotations and code completion for boto3.client("personalize").create_recommender
method.
boto3 documentation
# create_recommender method definition
def create_recommender(
self,
*,
name: str,
datasetGroupArn: str,
recipeArn: str,
recommenderConfig: RecommenderConfigTypeDef = ..., # (1)
tags: Sequence[TagTypeDef] = ..., # (2)
) -> CreateRecommenderResponseTypeDef: # (3)
...
# create_recommender method usage example with argument unpacking
kwargs: CreateRecommenderRequestRequestTypeDef = { # (1)
"name": ...,
"datasetGroupArn": ...,
"recipeArn": ...,
}
parent.create_recommender(**kwargs)
create_schema#
Creates an Amazon Personalize schema from the specified schema string.
Type annotations and code completion for boto3.client("personalize").create_schema
method.
boto3 documentation
# create_schema method definition
def create_schema(
self,
*,
name: str,
schema: str,
domain: DomainType = ..., # (1)
) -> CreateSchemaResponseTypeDef: # (2)
...
# create_schema method usage example with argument unpacking
kwargs: CreateSchemaRequestRequestTypeDef = { # (1)
"name": ...,
"schema": ...,
}
parent.create_schema(**kwargs)
create_solution#
By default, all new solutions use automatic training.
Type annotations and code completion for boto3.client("personalize").create_solution
method.
boto3 documentation
# create_solution method definition
def create_solution(
self,
*,
name: str,
datasetGroupArn: str,
performHPO: bool = ...,
performAutoML: bool = ...,
performAutoTraining: bool = ...,
recipeArn: str = ...,
eventType: str = ...,
solutionConfig: SolutionConfigTypeDef = ..., # (1)
tags: Sequence[TagTypeDef] = ..., # (2)
) -> CreateSolutionResponseTypeDef: # (3)
...
# create_solution method usage example with argument unpacking
kwargs: CreateSolutionRequestRequestTypeDef = { # (1)
"name": ...,
"datasetGroupArn": ...,
}
parent.create_solution(**kwargs)
create_solution_version#
Trains or retrains an active solution in a Custom dataset group.
Type annotations and code completion for boto3.client("personalize").create_solution_version
method.
boto3 documentation
# create_solution_version method definition
def create_solution_version(
self,
*,
solutionArn: str,
name: str = ...,
trainingMode: TrainingModeType = ..., # (1)
tags: Sequence[TagTypeDef] = ..., # (2)
) -> CreateSolutionVersionResponseTypeDef: # (3)
...
# create_solution_version method usage example with argument unpacking
kwargs: CreateSolutionVersionRequestRequestTypeDef = { # (1)
"solutionArn": ...,
}
parent.create_solution_version(**kwargs)
delete_campaign#
Removes a campaign by deleting the solution deployment.
Type annotations and code completion for boto3.client("personalize").delete_campaign
method.
boto3 documentation
# delete_campaign method definition
def delete_campaign(
self,
*,
campaignArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_campaign method usage example with argument unpacking
kwargs: DeleteCampaignRequestRequestTypeDef = { # (1)
"campaignArn": ...,
}
parent.delete_campaign(**kwargs)
delete_dataset#
Deletes a dataset.
Type annotations and code completion for boto3.client("personalize").delete_dataset
method.
boto3 documentation
# delete_dataset method definition
def delete_dataset(
self,
*,
datasetArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_dataset method usage example with argument unpacking
kwargs: DeleteDatasetRequestRequestTypeDef = { # (1)
"datasetArn": ...,
}
parent.delete_dataset(**kwargs)
delete_dataset_group#
Deletes a dataset group.
Type annotations and code completion for boto3.client("personalize").delete_dataset_group
method.
boto3 documentation
# delete_dataset_group method definition
def delete_dataset_group(
self,
*,
datasetGroupArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_dataset_group method usage example with argument unpacking
kwargs: DeleteDatasetGroupRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.delete_dataset_group(**kwargs)
delete_event_tracker#
Deletes the event tracker.
Type annotations and code completion for boto3.client("personalize").delete_event_tracker
method.
boto3 documentation
# delete_event_tracker method definition
def delete_event_tracker(
self,
*,
eventTrackerArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_event_tracker method usage example with argument unpacking
kwargs: DeleteEventTrackerRequestRequestTypeDef = { # (1)
"eventTrackerArn": ...,
}
parent.delete_event_tracker(**kwargs)
delete_filter#
Deletes a filter.
Type annotations and code completion for boto3.client("personalize").delete_filter
method.
boto3 documentation
# delete_filter method definition
def delete_filter(
self,
*,
filterArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_filter method usage example with argument unpacking
kwargs: DeleteFilterRequestRequestTypeDef = { # (1)
"filterArn": ...,
}
parent.delete_filter(**kwargs)
delete_metric_attribution#
Deletes a metric attribution.
Type annotations and code completion for boto3.client("personalize").delete_metric_attribution
method.
boto3 documentation
# delete_metric_attribution method definition
def delete_metric_attribution(
self,
*,
metricAttributionArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_metric_attribution method usage example with argument unpacking
kwargs: DeleteMetricAttributionRequestRequestTypeDef = { # (1)
"metricAttributionArn": ...,
}
parent.delete_metric_attribution(**kwargs)
delete_recommender#
Deactivates and removes a recommender.
Type annotations and code completion for boto3.client("personalize").delete_recommender
method.
boto3 documentation
# delete_recommender method definition
def delete_recommender(
self,
*,
recommenderArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_recommender method usage example with argument unpacking
kwargs: DeleteRecommenderRequestRequestTypeDef = { # (1)
"recommenderArn": ...,
}
parent.delete_recommender(**kwargs)
delete_schema#
Deletes a schema.
Type annotations and code completion for boto3.client("personalize").delete_schema
method.
boto3 documentation
# delete_schema method definition
def delete_schema(
self,
*,
schemaArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_schema method usage example with argument unpacking
kwargs: DeleteSchemaRequestRequestTypeDef = { # (1)
"schemaArn": ...,
}
parent.delete_schema(**kwargs)
delete_solution#
Deletes all versions of a solution and the Solution
object itself.
Type annotations and code completion for boto3.client("personalize").delete_solution
method.
boto3 documentation
# delete_solution method definition
def delete_solution(
self,
*,
solutionArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# delete_solution method usage example with argument unpacking
kwargs: DeleteSolutionRequestRequestTypeDef = { # (1)
"solutionArn": ...,
}
parent.delete_solution(**kwargs)
describe_algorithm#
Describes the given algorithm.
Type annotations and code completion for boto3.client("personalize").describe_algorithm
method.
boto3 documentation
# describe_algorithm method definition
def describe_algorithm(
self,
*,
algorithmArn: str,
) -> DescribeAlgorithmResponseTypeDef: # (1)
...
# describe_algorithm method usage example with argument unpacking
kwargs: DescribeAlgorithmRequestRequestTypeDef = { # (1)
"algorithmArn": ...,
}
parent.describe_algorithm(**kwargs)
describe_batch_inference_job#
Gets the properties of a batch inference job including name, Amazon Resource Name (ARN), status, input and output configurations, and the ARN of the solution version used to generate the recommendations.
Type annotations and code completion for boto3.client("personalize").describe_batch_inference_job
method.
boto3 documentation
# describe_batch_inference_job method definition
def describe_batch_inference_job(
self,
*,
batchInferenceJobArn: str,
) -> DescribeBatchInferenceJobResponseTypeDef: # (1)
...
# describe_batch_inference_job method usage example with argument unpacking
kwargs: DescribeBatchInferenceJobRequestRequestTypeDef = { # (1)
"batchInferenceJobArn": ...,
}
parent.describe_batch_inference_job(**kwargs)
describe_batch_segment_job#
Gets the properties of a batch segment job including name, Amazon Resource Name (ARN), status, input and output configurations, and the ARN of the solution version used to generate segments.
Type annotations and code completion for boto3.client("personalize").describe_batch_segment_job
method.
boto3 documentation
# describe_batch_segment_job method definition
def describe_batch_segment_job(
self,
*,
batchSegmentJobArn: str,
) -> DescribeBatchSegmentJobResponseTypeDef: # (1)
...
# describe_batch_segment_job method usage example with argument unpacking
kwargs: DescribeBatchSegmentJobRequestRequestTypeDef = { # (1)
"batchSegmentJobArn": ...,
}
parent.describe_batch_segment_job(**kwargs)
describe_campaign#
Describes the given campaign, including its status.
Type annotations and code completion for boto3.client("personalize").describe_campaign
method.
boto3 documentation
# describe_campaign method definition
def describe_campaign(
self,
*,
campaignArn: str,
) -> DescribeCampaignResponseTypeDef: # (1)
...
# describe_campaign method usage example with argument unpacking
kwargs: DescribeCampaignRequestRequestTypeDef = { # (1)
"campaignArn": ...,
}
parent.describe_campaign(**kwargs)
describe_data_deletion_job#
Describes the data deletion job created by CreateDataDeletionJob, including the job status.
Type annotations and code completion for boto3.client("personalize").describe_data_deletion_job
method.
boto3 documentation
# describe_data_deletion_job method definition
def describe_data_deletion_job(
self,
*,
dataDeletionJobArn: str,
) -> DescribeDataDeletionJobResponseTypeDef: # (1)
...
# describe_data_deletion_job method usage example with argument unpacking
kwargs: DescribeDataDeletionJobRequestRequestTypeDef = { # (1)
"dataDeletionJobArn": ...,
}
parent.describe_data_deletion_job(**kwargs)
describe_dataset#
Describes the given dataset.
Type annotations and code completion for boto3.client("personalize").describe_dataset
method.
boto3 documentation
# describe_dataset method definition
def describe_dataset(
self,
*,
datasetArn: str,
) -> DescribeDatasetResponseTypeDef: # (1)
...
# describe_dataset method usage example with argument unpacking
kwargs: DescribeDatasetRequestRequestTypeDef = { # (1)
"datasetArn": ...,
}
parent.describe_dataset(**kwargs)
describe_dataset_export_job#
Describes the dataset export job created by CreateDatasetExportJob, including the export job status.
Type annotations and code completion for boto3.client("personalize").describe_dataset_export_job
method.
boto3 documentation
# describe_dataset_export_job method definition
def describe_dataset_export_job(
self,
*,
datasetExportJobArn: str,
) -> DescribeDatasetExportJobResponseTypeDef: # (1)
...
# describe_dataset_export_job method usage example with argument unpacking
kwargs: DescribeDatasetExportJobRequestRequestTypeDef = { # (1)
"datasetExportJobArn": ...,
}
parent.describe_dataset_export_job(**kwargs)
describe_dataset_group#
Describes the given dataset group.
Type annotations and code completion for boto3.client("personalize").describe_dataset_group
method.
boto3 documentation
# describe_dataset_group method definition
def describe_dataset_group(
self,
*,
datasetGroupArn: str,
) -> DescribeDatasetGroupResponseTypeDef: # (1)
...
# describe_dataset_group method usage example with argument unpacking
kwargs: DescribeDatasetGroupRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.describe_dataset_group(**kwargs)
describe_dataset_import_job#
Describes the dataset import job created by CreateDatasetImportJob, including the import job status.
Type annotations and code completion for boto3.client("personalize").describe_dataset_import_job
method.
boto3 documentation
# describe_dataset_import_job method definition
def describe_dataset_import_job(
self,
*,
datasetImportJobArn: str,
) -> DescribeDatasetImportJobResponseTypeDef: # (1)
...
# describe_dataset_import_job method usage example with argument unpacking
kwargs: DescribeDatasetImportJobRequestRequestTypeDef = { # (1)
"datasetImportJobArn": ...,
}
parent.describe_dataset_import_job(**kwargs)
describe_event_tracker#
Describes an event tracker.
Type annotations and code completion for boto3.client("personalize").describe_event_tracker
method.
boto3 documentation
# describe_event_tracker method definition
def describe_event_tracker(
self,
*,
eventTrackerArn: str,
) -> DescribeEventTrackerResponseTypeDef: # (1)
...
# describe_event_tracker method usage example with argument unpacking
kwargs: DescribeEventTrackerRequestRequestTypeDef = { # (1)
"eventTrackerArn": ...,
}
parent.describe_event_tracker(**kwargs)
describe_feature_transformation#
Describes the given feature transformation.
Type annotations and code completion for boto3.client("personalize").describe_feature_transformation
method.
boto3 documentation
# describe_feature_transformation method definition
def describe_feature_transformation(
self,
*,
featureTransformationArn: str,
) -> DescribeFeatureTransformationResponseTypeDef: # (1)
...
# describe_feature_transformation method usage example with argument unpacking
kwargs: DescribeFeatureTransformationRequestRequestTypeDef = { # (1)
"featureTransformationArn": ...,
}
parent.describe_feature_transformation(**kwargs)
describe_filter#
Describes a filter's properties.
Type annotations and code completion for boto3.client("personalize").describe_filter
method.
boto3 documentation
# describe_filter method definition
def describe_filter(
self,
*,
filterArn: str,
) -> DescribeFilterResponseTypeDef: # (1)
...
# describe_filter method usage example with argument unpacking
kwargs: DescribeFilterRequestRequestTypeDef = { # (1)
"filterArn": ...,
}
parent.describe_filter(**kwargs)
describe_metric_attribution#
Describes a metric attribution.
Type annotations and code completion for boto3.client("personalize").describe_metric_attribution
method.
boto3 documentation
# describe_metric_attribution method definition
def describe_metric_attribution(
self,
*,
metricAttributionArn: str,
) -> DescribeMetricAttributionResponseTypeDef: # (1)
...
# describe_metric_attribution method usage example with argument unpacking
kwargs: DescribeMetricAttributionRequestRequestTypeDef = { # (1)
"metricAttributionArn": ...,
}
parent.describe_metric_attribution(**kwargs)
describe_recipe#
Describes a recipe.
Type annotations and code completion for boto3.client("personalize").describe_recipe
method.
boto3 documentation
# describe_recipe method definition
def describe_recipe(
self,
*,
recipeArn: str,
) -> DescribeRecipeResponseTypeDef: # (1)
...
# describe_recipe method usage example with argument unpacking
kwargs: DescribeRecipeRequestRequestTypeDef = { # (1)
"recipeArn": ...,
}
parent.describe_recipe(**kwargs)
describe_recommender#
Describes the given recommender, including its status.
Type annotations and code completion for boto3.client("personalize").describe_recommender
method.
boto3 documentation
# describe_recommender method definition
def describe_recommender(
self,
*,
recommenderArn: str,
) -> DescribeRecommenderResponseTypeDef: # (1)
...
# describe_recommender method usage example with argument unpacking
kwargs: DescribeRecommenderRequestRequestTypeDef = { # (1)
"recommenderArn": ...,
}
parent.describe_recommender(**kwargs)
describe_schema#
Describes a schema.
Type annotations and code completion for boto3.client("personalize").describe_schema
method.
boto3 documentation
# describe_schema method definition
def describe_schema(
self,
*,
schemaArn: str,
) -> DescribeSchemaResponseTypeDef: # (1)
...
# describe_schema method usage example with argument unpacking
kwargs: DescribeSchemaRequestRequestTypeDef = { # (1)
"schemaArn": ...,
}
parent.describe_schema(**kwargs)
describe_solution#
Describes a solution.
Type annotations and code completion for boto3.client("personalize").describe_solution
method.
boto3 documentation
# describe_solution method definition
def describe_solution(
self,
*,
solutionArn: str,
) -> DescribeSolutionResponseTypeDef: # (1)
...
# describe_solution method usage example with argument unpacking
kwargs: DescribeSolutionRequestRequestTypeDef = { # (1)
"solutionArn": ...,
}
parent.describe_solution(**kwargs)
describe_solution_version#
Describes a specific version of a solution.
Type annotations and code completion for boto3.client("personalize").describe_solution_version
method.
boto3 documentation
# describe_solution_version method definition
def describe_solution_version(
self,
*,
solutionVersionArn: str,
) -> DescribeSolutionVersionResponseTypeDef: # (1)
...
# describe_solution_version method usage example with argument unpacking
kwargs: DescribeSolutionVersionRequestRequestTypeDef = { # (1)
"solutionVersionArn": ...,
}
parent.describe_solution_version(**kwargs)
get_solution_metrics#
Gets the metrics for the specified solution version.
Type annotations and code completion for boto3.client("personalize").get_solution_metrics
method.
boto3 documentation
# get_solution_metrics method definition
def get_solution_metrics(
self,
*,
solutionVersionArn: str,
) -> GetSolutionMetricsResponseTypeDef: # (1)
...
# get_solution_metrics method usage example with argument unpacking
kwargs: GetSolutionMetricsRequestRequestTypeDef = { # (1)
"solutionVersionArn": ...,
}
parent.get_solution_metrics(**kwargs)
list_batch_inference_jobs#
Gets a list of the batch inference jobs that have been performed off of a solution version.
Type annotations and code completion for boto3.client("personalize").list_batch_inference_jobs
method.
boto3 documentation
# list_batch_inference_jobs method definition
def list_batch_inference_jobs(
self,
*,
solutionVersionArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListBatchInferenceJobsResponseTypeDef: # (1)
...
# list_batch_inference_jobs method usage example with argument unpacking
kwargs: ListBatchInferenceJobsRequestRequestTypeDef = { # (1)
"solutionVersionArn": ...,
}
parent.list_batch_inference_jobs(**kwargs)
list_batch_segment_jobs#
Gets a list of the batch segment jobs that have been performed off of a solution version that you specify.
Type annotations and code completion for boto3.client("personalize").list_batch_segment_jobs
method.
boto3 documentation
# list_batch_segment_jobs method definition
def list_batch_segment_jobs(
self,
*,
solutionVersionArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListBatchSegmentJobsResponseTypeDef: # (1)
...
# list_batch_segment_jobs method usage example with argument unpacking
kwargs: ListBatchSegmentJobsRequestRequestTypeDef = { # (1)
"solutionVersionArn": ...,
}
parent.list_batch_segment_jobs(**kwargs)
list_campaigns#
Returns a list of campaigns that use the given solution.
Type annotations and code completion for boto3.client("personalize").list_campaigns
method.
boto3 documentation
# list_campaigns method definition
def list_campaigns(
self,
*,
solutionArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListCampaignsResponseTypeDef: # (1)
...
# list_campaigns method usage example with argument unpacking
kwargs: ListCampaignsRequestRequestTypeDef = { # (1)
"solutionArn": ...,
}
parent.list_campaigns(**kwargs)
list_data_deletion_jobs#
Returns a list of data deletion jobs for a dataset group ordered by creation time, with the most recent first.
Type annotations and code completion for boto3.client("personalize").list_data_deletion_jobs
method.
boto3 documentation
# list_data_deletion_jobs method definition
def list_data_deletion_jobs(
self,
*,
datasetGroupArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListDataDeletionJobsResponseTypeDef: # (1)
...
# list_data_deletion_jobs method usage example with argument unpacking
kwargs: ListDataDeletionJobsRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.list_data_deletion_jobs(**kwargs)
list_dataset_export_jobs#
Returns a list of dataset export jobs that use the given dataset.
Type annotations and code completion for boto3.client("personalize").list_dataset_export_jobs
method.
boto3 documentation
# list_dataset_export_jobs method definition
def list_dataset_export_jobs(
self,
*,
datasetArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListDatasetExportJobsResponseTypeDef: # (1)
...
# list_dataset_export_jobs method usage example with argument unpacking
kwargs: ListDatasetExportJobsRequestRequestTypeDef = { # (1)
"datasetArn": ...,
}
parent.list_dataset_export_jobs(**kwargs)
list_dataset_groups#
Returns a list of dataset groups.
Type annotations and code completion for boto3.client("personalize").list_dataset_groups
method.
boto3 documentation
# list_dataset_groups method definition
def list_dataset_groups(
self,
*,
nextToken: str = ...,
maxResults: int = ...,
) -> ListDatasetGroupsResponseTypeDef: # (1)
...
# list_dataset_groups method usage example with argument unpacking
kwargs: ListDatasetGroupsRequestRequestTypeDef = { # (1)
"nextToken": ...,
}
parent.list_dataset_groups(**kwargs)
list_dataset_import_jobs#
Returns a list of dataset import jobs that use the given dataset.
Type annotations and code completion for boto3.client("personalize").list_dataset_import_jobs
method.
boto3 documentation
# list_dataset_import_jobs method definition
def list_dataset_import_jobs(
self,
*,
datasetArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListDatasetImportJobsResponseTypeDef: # (1)
...
# list_dataset_import_jobs method usage example with argument unpacking
kwargs: ListDatasetImportJobsRequestRequestTypeDef = { # (1)
"datasetArn": ...,
}
parent.list_dataset_import_jobs(**kwargs)
list_datasets#
Returns the list of datasets contained in the given dataset group.
Type annotations and code completion for boto3.client("personalize").list_datasets
method.
boto3 documentation
# list_datasets method definition
def list_datasets(
self,
*,
datasetGroupArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListDatasetsResponseTypeDef: # (1)
...
# list_datasets method usage example with argument unpacking
kwargs: ListDatasetsRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.list_datasets(**kwargs)
list_event_trackers#
Returns the list of event trackers associated with the account.
Type annotations and code completion for boto3.client("personalize").list_event_trackers
method.
boto3 documentation
# list_event_trackers method definition
def list_event_trackers(
self,
*,
datasetGroupArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListEventTrackersResponseTypeDef: # (1)
...
# list_event_trackers method usage example with argument unpacking
kwargs: ListEventTrackersRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.list_event_trackers(**kwargs)
list_filters#
Lists all filters that belong to a given dataset group.
Type annotations and code completion for boto3.client("personalize").list_filters
method.
boto3 documentation
# list_filters method definition
def list_filters(
self,
*,
datasetGroupArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListFiltersResponseTypeDef: # (1)
...
# list_filters method usage example with argument unpacking
kwargs: ListFiltersRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.list_filters(**kwargs)
list_metric_attribution_metrics#
Lists the metrics for the metric attribution.
Type annotations and code completion for boto3.client("personalize").list_metric_attribution_metrics
method.
boto3 documentation
# list_metric_attribution_metrics method definition
def list_metric_attribution_metrics(
self,
*,
metricAttributionArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListMetricAttributionMetricsResponseTypeDef: # (1)
...
# list_metric_attribution_metrics method usage example with argument unpacking
kwargs: ListMetricAttributionMetricsRequestRequestTypeDef = { # (1)
"metricAttributionArn": ...,
}
parent.list_metric_attribution_metrics(**kwargs)
list_metric_attributions#
Lists metric attributions.
Type annotations and code completion for boto3.client("personalize").list_metric_attributions
method.
boto3 documentation
# list_metric_attributions method definition
def list_metric_attributions(
self,
*,
datasetGroupArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListMetricAttributionsResponseTypeDef: # (1)
...
# list_metric_attributions method usage example with argument unpacking
kwargs: ListMetricAttributionsRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.list_metric_attributions(**kwargs)
list_recipes#
Returns a list of available recipes.
Type annotations and code completion for boto3.client("personalize").list_recipes
method.
boto3 documentation
# list_recipes method definition
def list_recipes(
self,
*,
recipeProvider: RecipeProviderType = ..., # (1)
nextToken: str = ...,
maxResults: int = ...,
domain: DomainType = ..., # (2)
) -> ListRecipesResponseTypeDef: # (3)
...
- See RecipeProviderType
- See DomainType
- See ListRecipesResponseTypeDef
# list_recipes method usage example with argument unpacking
kwargs: ListRecipesRequestRequestTypeDef = { # (1)
"recipeProvider": ...,
}
parent.list_recipes(**kwargs)
list_recommenders#
Returns a list of recommenders in a given Domain dataset group.
Type annotations and code completion for boto3.client("personalize").list_recommenders
method.
boto3 documentation
# list_recommenders method definition
def list_recommenders(
self,
*,
datasetGroupArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListRecommendersResponseTypeDef: # (1)
...
# list_recommenders method usage example with argument unpacking
kwargs: ListRecommendersRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.list_recommenders(**kwargs)
list_schemas#
Returns the list of schemas associated with the account.
Type annotations and code completion for boto3.client("personalize").list_schemas
method.
boto3 documentation
# list_schemas method definition
def list_schemas(
self,
*,
nextToken: str = ...,
maxResults: int = ...,
) -> ListSchemasResponseTypeDef: # (1)
...
# list_schemas method usage example with argument unpacking
kwargs: ListSchemasRequestRequestTypeDef = { # (1)
"nextToken": ...,
}
parent.list_schemas(**kwargs)
list_solution_versions#
Returns a list of solution versions for the given solution.
Type annotations and code completion for boto3.client("personalize").list_solution_versions
method.
boto3 documentation
# list_solution_versions method definition
def list_solution_versions(
self,
*,
solutionArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListSolutionVersionsResponseTypeDef: # (1)
...
# list_solution_versions method usage example with argument unpacking
kwargs: ListSolutionVersionsRequestRequestTypeDef = { # (1)
"solutionArn": ...,
}
parent.list_solution_versions(**kwargs)
list_solutions#
Returns a list of solutions in a given dataset group.
Type annotations and code completion for boto3.client("personalize").list_solutions
method.
boto3 documentation
# list_solutions method definition
def list_solutions(
self,
*,
datasetGroupArn: str = ...,
nextToken: str = ...,
maxResults: int = ...,
) -> ListSolutionsResponseTypeDef: # (1)
...
# list_solutions method usage example with argument unpacking
kwargs: ListSolutionsRequestRequestTypeDef = { # (1)
"datasetGroupArn": ...,
}
parent.list_solutions(**kwargs)
list_tags_for_resource#
Get a list of tags attached to a resource.
Type annotations and code completion for boto3.client("personalize").list_tags_for_resource
method.
boto3 documentation
# list_tags_for_resource method definition
def list_tags_for_resource(
self,
*,
resourceArn: str,
) -> ListTagsForResourceResponseTypeDef: # (1)
...
# list_tags_for_resource method usage example with argument unpacking
kwargs: ListTagsForResourceRequestRequestTypeDef = { # (1)
"resourceArn": ...,
}
parent.list_tags_for_resource(**kwargs)
start_recommender#
Starts a recommender that is INACTIVE.
Type annotations and code completion for boto3.client("personalize").start_recommender
method.
boto3 documentation
# start_recommender method definition
def start_recommender(
self,
*,
recommenderArn: str,
) -> StartRecommenderResponseTypeDef: # (1)
...
# start_recommender method usage example with argument unpacking
kwargs: StartRecommenderRequestRequestTypeDef = { # (1)
"recommenderArn": ...,
}
parent.start_recommender(**kwargs)
stop_recommender#
Stops a recommender that is ACTIVE.
Type annotations and code completion for boto3.client("personalize").stop_recommender
method.
boto3 documentation
# stop_recommender method definition
def stop_recommender(
self,
*,
recommenderArn: str,
) -> StopRecommenderResponseTypeDef: # (1)
...
# stop_recommender method usage example with argument unpacking
kwargs: StopRecommenderRequestRequestTypeDef = { # (1)
"recommenderArn": ...,
}
parent.stop_recommender(**kwargs)
stop_solution_version_creation#
Stops creating a solution version that is in a state of CREATE_PENDING or CREATE IN_PROGRESS.
Type annotations and code completion for boto3.client("personalize").stop_solution_version_creation
method.
boto3 documentation
# stop_solution_version_creation method definition
def stop_solution_version_creation(
self,
*,
solutionVersionArn: str,
) -> EmptyResponseMetadataTypeDef: # (1)
...
# stop_solution_version_creation method usage example with argument unpacking
kwargs: StopSolutionVersionCreationRequestRequestTypeDef = { # (1)
"solutionVersionArn": ...,
}
parent.stop_solution_version_creation(**kwargs)
tag_resource#
Add a list of tags to a resource.
Type annotations and code completion for boto3.client("personalize").tag_resource
method.
boto3 documentation
# tag_resource method definition
def tag_resource(
self,
*,
resourceArn: str,
tags: Sequence[TagTypeDef], # (1)
) -> dict[str, Any]:
...
- See TagTypeDef
# tag_resource method usage example with argument unpacking
kwargs: TagResourceRequestRequestTypeDef = { # (1)
"resourceArn": ...,
"tags": ...,
}
parent.tag_resource(**kwargs)
untag_resource#
Removes the specified tags that are attached to a resource.
Type annotations and code completion for boto3.client("personalize").untag_resource
method.
boto3 documentation
# untag_resource method definition
def untag_resource(
self,
*,
resourceArn: str,
tagKeys: Sequence[str],
) -> dict[str, Any]:
...
# untag_resource method usage example with argument unpacking
kwargs: UntagResourceRequestRequestTypeDef = { # (1)
"resourceArn": ...,
"tagKeys": ...,
}
parent.untag_resource(**kwargs)
update_campaign#
Updates a campaign to deploy a retrained solution version with an existing
campaign, change your campaign's minProvisionedTPS
, or modify your
campaign's configuration.
Type annotations and code completion for boto3.client("personalize").update_campaign
method.
boto3 documentation
# update_campaign method definition
def update_campaign(
self,
*,
campaignArn: str,
solutionVersionArn: str = ...,
minProvisionedTPS: int = ...,
campaignConfig: CampaignConfigTypeDef = ..., # (1)
) -> UpdateCampaignResponseTypeDef: # (2)
...
# update_campaign method usage example with argument unpacking
kwargs: UpdateCampaignRequestRequestTypeDef = { # (1)
"campaignArn": ...,
}
parent.update_campaign(**kwargs)
update_dataset#
Update a dataset to replace its schema with a new or existing one.
Type annotations and code completion for boto3.client("personalize").update_dataset
method.
boto3 documentation
# update_dataset method definition
def update_dataset(
self,
*,
datasetArn: str,
schemaArn: str,
) -> UpdateDatasetResponseTypeDef: # (1)
...
# update_dataset method usage example with argument unpacking
kwargs: UpdateDatasetRequestRequestTypeDef = { # (1)
"datasetArn": ...,
"schemaArn": ...,
}
parent.update_dataset(**kwargs)
update_metric_attribution#
Updates a metric attribution.
Type annotations and code completion for boto3.client("personalize").update_metric_attribution
method.
boto3 documentation
# update_metric_attribution method definition
def update_metric_attribution(
self,
*,
addMetrics: Sequence[MetricAttributeTypeDef] = ..., # (1)
removeMetrics: Sequence[str] = ...,
metricsOutputConfig: MetricAttributionOutputTypeDef = ..., # (2)
metricAttributionArn: str = ...,
) -> UpdateMetricAttributionResponseTypeDef: # (3)
...
- See MetricAttributeTypeDef
- See MetricAttributionOutputTypeDef
- See UpdateMetricAttributionResponseTypeDef
# update_metric_attribution method usage example with argument unpacking
kwargs: UpdateMetricAttributionRequestRequestTypeDef = { # (1)
"addMetrics": ...,
}
parent.update_metric_attribution(**kwargs)
update_recommender#
Updates the recommender to modify the recommender configuration.
Type annotations and code completion for boto3.client("personalize").update_recommender
method.
boto3 documentation
# update_recommender method definition
def update_recommender(
self,
*,
recommenderArn: str,
recommenderConfig: RecommenderConfigTypeDef, # (1)
) -> UpdateRecommenderResponseTypeDef: # (2)
...
# update_recommender method usage example with argument unpacking
kwargs: UpdateRecommenderRequestRequestTypeDef = { # (1)
"recommenderArn": ...,
"recommenderConfig": ...,
}
parent.update_recommender(**kwargs)
update_solution#
Updates an Amazon Personalize solution to use a different automatic training configuration.
Type annotations and code completion for boto3.client("personalize").update_solution
method.
boto3 documentation
# update_solution method definition
def update_solution(
self,
*,
solutionArn: str,
performAutoTraining: bool = ...,
solutionUpdateConfig: SolutionUpdateConfigTypeDef = ..., # (1)
) -> UpdateSolutionResponseTypeDef: # (2)
...
# update_solution method usage example with argument unpacking
kwargs: UpdateSolutionRequestRequestTypeDef = { # (1)
"solutionArn": ...,
}
parent.update_solution(**kwargs)
get_paginator#
Type annotations and code completion for boto3.client("personalize").get_paginator
method with overloads.
client.get_paginator("list_batch_inference_jobs")
-> ListBatchInferenceJobsPaginatorclient.get_paginator("list_batch_segment_jobs")
-> ListBatchSegmentJobsPaginatorclient.get_paginator("list_campaigns")
-> ListCampaignsPaginatorclient.get_paginator("list_dataset_export_jobs")
-> ListDatasetExportJobsPaginatorclient.get_paginator("list_dataset_groups")
-> ListDatasetGroupsPaginatorclient.get_paginator("list_dataset_import_jobs")
-> ListDatasetImportJobsPaginatorclient.get_paginator("list_datasets")
-> ListDatasetsPaginatorclient.get_paginator("list_event_trackers")
-> ListEventTrackersPaginatorclient.get_paginator("list_filters")
-> ListFiltersPaginatorclient.get_paginator("list_metric_attribution_metrics")
-> ListMetricAttributionMetricsPaginatorclient.get_paginator("list_metric_attributions")
-> ListMetricAttributionsPaginatorclient.get_paginator("list_recipes")
-> ListRecipesPaginatorclient.get_paginator("list_recommenders")
-> ListRecommendersPaginatorclient.get_paginator("list_schemas")
-> ListSchemasPaginatorclient.get_paginator("list_solution_versions")
-> ListSolutionVersionsPaginatorclient.get_paginator("list_solutions")
-> ListSolutionsPaginator