SageMakerRuntimeClient#
Index > SageMakerRuntime > SageMakerRuntimeClient
Auto-generated documentation for SageMakerRuntime type annotations stubs module mypy-boto3-sagemaker-runtime.
SageMakerRuntimeClient#
Type annotations and code completion for boto3.client("sagemaker-runtime")
.
boto3 documentation
# SageMakerRuntimeClient usage example
from boto3.session import Session
from mypy_boto3_sagemaker_runtime.client import SageMakerRuntimeClient
def get_sagemaker-runtime_client() -> SageMakerRuntimeClient:
return Session().client("sagemaker-runtime")
Exceptions#
boto3
client exceptions are generated in runtime.
This class provides code completion for boto3.client("sagemaker-runtime").exceptions
structure.
# Exceptions.exceptions usage example
client = boto3.client("sagemaker-runtime")
try:
do_something(client)
except (
client.exceptions.ClientError,
client.exceptions.InternalDependencyException,
client.exceptions.InternalFailure,
client.exceptions.InternalStreamFailure,
client.exceptions.ModelError,
client.exceptions.ModelNotReadyException,
client.exceptions.ModelStreamError,
client.exceptions.ServiceUnavailable,
client.exceptions.ValidationError,
) as e:
print(e)
# Exceptions.exceptions type checking example
from mypy_boto3_sagemaker_runtime.client import Exceptions
def handle_error(exc: Exceptions.ClientError) -> None:
...
Methods#
can_paginate#
Check if an operation can be paginated.
Type annotations and code completion for boto3.client("sagemaker-runtime").can_paginate
method.
boto3 documentation
# can_paginate method definition
def can_paginate(
self,
operation_name: str,
) -> bool:
...
close#
Closes underlying endpoint connections.
Type annotations and code completion for boto3.client("sagemaker-runtime").close
method.
boto3 documentation
# close method definition
def close(
self,
) -> None:
...
generate_presigned_url#
Generate a presigned url given a client, its method, and arguments.
Type annotations and code completion for boto3.client("sagemaker-runtime").generate_presigned_url
method.
boto3 documentation
# generate_presigned_url method definition
def generate_presigned_url(
self,
ClientMethod: str,
Params: Mapping[str, Any] = ...,
ExpiresIn: int = 3600,
HttpMethod: str = ...,
) -> str:
...
invoke_endpoint#
After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint.
Type annotations and code completion for boto3.client("sagemaker-runtime").invoke_endpoint
method.
boto3 documentation
# invoke_endpoint method definition
def invoke_endpoint(
self,
*,
EndpointName: str,
Body: BlobTypeDef,
ContentType: str = ...,
Accept: str = ...,
CustomAttributes: str = ...,
TargetModel: str = ...,
TargetVariant: str = ...,
TargetContainerHostname: str = ...,
InferenceId: str = ...,
EnableExplanations: str = ...,
InferenceComponentName: str = ...,
SessionId: str = ...,
) -> InvokeEndpointOutputTypeDef: # (1)
...
# invoke_endpoint method usage example with argument unpacking
kwargs: InvokeEndpointInputRequestTypeDef = { # (1)
"EndpointName": ...,
"Body": ...,
}
parent.invoke_endpoint(**kwargs)
invoke_endpoint_async#
After you deploy a model into production using Amazon SageMaker hosting services, your client applications use this API to get inferences from the model hosted at the specified endpoint in an asynchronous manner.
Type annotations and code completion for boto3.client("sagemaker-runtime").invoke_endpoint_async
method.
boto3 documentation
# invoke_endpoint_async method definition
def invoke_endpoint_async(
self,
*,
EndpointName: str,
InputLocation: str,
ContentType: str = ...,
Accept: str = ...,
CustomAttributes: str = ...,
InferenceId: str = ...,
RequestTTLSeconds: int = ...,
InvocationTimeoutSeconds: int = ...,
) -> InvokeEndpointAsyncOutputTypeDef: # (1)
...
# invoke_endpoint_async method usage example with argument unpacking
kwargs: InvokeEndpointAsyncInputRequestTypeDef = { # (1)
"EndpointName": ...,
"InputLocation": ...,
}
parent.invoke_endpoint_async(**kwargs)
invoke_endpoint_with_response_stream#
Invokes a model at the specified endpoint to return the inference response as a stream.
Type annotations and code completion for boto3.client("sagemaker-runtime").invoke_endpoint_with_response_stream
method.
boto3 documentation
# invoke_endpoint_with_response_stream method definition
def invoke_endpoint_with_response_stream(
self,
*,
EndpointName: str,
Body: BlobTypeDef,
ContentType: str = ...,
Accept: str = ...,
CustomAttributes: str = ...,
TargetVariant: str = ...,
TargetContainerHostname: str = ...,
InferenceId: str = ...,
InferenceComponentName: str = ...,
SessionId: str = ...,
) -> InvokeEndpointWithResponseStreamOutputTypeDef: # (1)
...
# invoke_endpoint_with_response_stream method usage example with argument unpacking
kwargs: InvokeEndpointWithResponseStreamInputRequestTypeDef = { # (1)
"EndpointName": ...,
"Body": ...,
}
parent.invoke_endpoint_with_response_stream(**kwargs)